Table of Contents

1. About this Guide ..4
2. Loadbalancer.org Appliances Supported ..4
3. Loadbalancer.org Software Versions Supported ...4
4. Microsoft Windows Versions Supported ..4
5. Active Directory Federation Services (AD FS) ..5
 Introduction ..5
 AD FS SSO Scenario’s ...5
 Web SSO ..5
 Federated Web SSO ..5
 AD FS Versions ...6
 Role Services ..6
 How AD FS Works ..6
 Internal Clients ...7
 External Clients ..8
 Other Useful References ..8
6. Load Balancing AD FS ...9
 Basic Concepts ...9
 Load Balanced Ports & Services ...9
 Persistence (Server Affinity) Requirements & Options9
 Server Health checking ...9
 Load Balancer Deployment ...10
7. Loadbalancer.org Appliance – the Basics ...11
 Virtual Appliance Download & Deployment ..11
 Initial Network Configuration ..11
 Accessing the Web User Interface (WebUI) ...12
 HA Clustered Pair Configuration ...13
8. Appliance & Server Configuration - AD FS 2.0 ...14
 Federation Servers ..14
 AD FS Installation & Configuration ..14
 Load Balancer Configuration ...14
 DNS Configuration ..16
 Testing & Verification ...16
 Federation Proxy Servers16
 AD FS Installation & Configuration ..16
 Load Balancer Configuration ...16
 DNS Configuration ..18
 Testing & Verification ...18
9. Appliance & Server Configuration - AD FS 3.0 ...19
 Federation Servers ..19
 AD FS Installation & Configuration ..19
 Load Balancer Configuration ...19
 DNS Configuration ..22
 Testing & Verification ...22
1. About this Guide

This guide details the steps required to configure a load balanced Microsoft AD FS environment utilizing Loadbalancer.org appliances. It covers the configuration of the load balancers and also any Microsoft AD FS configuration changes that are required to enable load balancing.

For more information about initial appliance deployment, network configuration and using the Web User Interface (WebUI), please also refer to the relevant Administration Manual:

2. Loadbalancer.org Appliances Supported

All our products can be used with AD FS. The complete list of models is shown below:

<table>
<thead>
<tr>
<th>Discontinued Models</th>
<th>Current Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise R16</td>
<td>Enterprise R20</td>
</tr>
<tr>
<td>Enterprise VA R16</td>
<td>Enterprise MAX</td>
</tr>
<tr>
<td>Enterprise VA</td>
<td>Enterprise 10G</td>
</tr>
<tr>
<td>Enterprise R320</td>
<td>Enterprise Ultra</td>
</tr>
<tr>
<td></td>
<td>Enterprise VA R20</td>
</tr>
<tr>
<td></td>
<td>Enterprise VA MAX</td>
</tr>
<tr>
<td></td>
<td>Enterprise AWS</td>
</tr>
<tr>
<td></td>
<td>Enterprise AZURE **</td>
</tr>
</tbody>
</table>

* For full specifications of these models please refer to: http://www.loadbalancer.org/products/hardware
** Some features may not be supported, please check with Loadbalancer.org support

3. Loadbalancer.org Software Versions Supported

- V7.6.4 and later

4. Microsoft Windows Versions Supported

- Windows 2008 R2 and later (AD FS 2.x – AD FS 3.x)
Active Directory Federation Services (AD FS)

INTRODUCTION
AD FS provides simplified, secured identity federation and Web single sign-on (SSO) capabilities for end users who need access to applications within an AD FS secured enterprise, in federation partner organizations, or in the cloud.

AD FS is a Web Service that authenticates users against Active Directory and provides them access to claims-aware applications. These applications are typically used through the client's web browser. The applications can be on-premises, off-premises, or even hosted by other companies.

AD FS SSO SCENARIO'S

WEB SSO
This is the most common scenario. Here users login to web applications, either off-premises or on-premises, from their browsers using their Active Directory credentials. Examples of such applications include:

- salesforce.com
- servicenow.com
- SharePoint Online (SPO)
- Office 365
- etc.

FEDERATED WEB SSO
The following scenarios are examples of Federated SSO. These scenarios aren’t as common but they illustrate how AD FS can be used to collaborate with a partner, another company, or another AD forest:

- You want users from another organization to login to your web applications using their own identity credentials.
- You want to login to another organization's web applications using your own Active Directory credentials.
- You want users from another internal Active Directory forest to login to your web applications in your Active Directory using their own AD credentials without a domain and/or forest trust.
- You want to use your production Active Directory credentials to login to test web applications located in your test Active Directory environment without a domain and/or forest trust.
- You want users to be able to login to your web applications using their Google, Facebook, Live ID, Yahoo, etc. credentials.

Note:
For more details please refer to the following URL:
AD FS VERSIONS
The following table lists the various versions of AD FS and in which Windows version they were initially released:

<table>
<thead>
<tr>
<th>AD FS Version</th>
<th>Released in Windows Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2003 R2</td>
</tr>
<tr>
<td>1.1</td>
<td>2008</td>
</tr>
<tr>
<td>2.0</td>
<td>2008 R2</td>
</tr>
<tr>
<td>2.1</td>
<td>2012</td>
</tr>
<tr>
<td>3.0</td>
<td>2012 R2</td>
</tr>
</tbody>
</table>

ROLE SERVICES
The following role services can be deployed as part of the ADFS role:

<table>
<thead>
<tr>
<th>Role Service</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federation Server</td>
<td>Acts as an identity provider - Authenticates users to provide security tokens to applications that trust AD FS</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Acts as a federation provider - Conducts tokens from other identity providers and then provides security tokens to applications that trust AD FS</td>
</tr>
<tr>
<td>Federation Server Proxy</td>
<td>The Federation Service Proxy functions act as an intermediary proxy service between an Internet client and a Federation Server that is located behind a firewall on a corporate network.</td>
</tr>
<tr>
<td></td>
<td>Note: In Windows 2012 R2 (AD FS v3.0) the dedicated Proxy role service has been removed. Instead, the proxy is based on WAP (Web Application Proxy).</td>
</tr>
</tbody>
</table>

HOW AD FS WORKS
The following sections explain how AD FS authenticates internal LAN based users and external Internet based users.
A Microsoft Dynamics CRM example is used with AD FS 2.0, although the general flow is the same for other applications and different AD FS versions.

Note:
INTERNAL CLIENTS
The authentication process for internal clients is shown below:

1. The client sends a request to access the Microsoft Dynamics CRM website.
2. IIS refuses the connection with an HTTP 302 error message and redirects the user to the trusted claims provider (also known as the STS) for Microsoft Dynamics CRM (AD FS 2.0).
3. The client sends a request for a security token to AD FS 2.0.
4. AD FS 2.0 returns an HTTP 401.1 error, indicating that the client must supply a Kerberos ticket.
5. The client sends a Kerberos authentication request to Active Directory.
6. Active Directory validates the client and sends a Kerberos ticket.
7. The client sends a request for a security token to AD FS 2.0 and includes the Kerberos ticket.

Note:
If the client already has a valid Kerberos ticket on the network, this ticket is sent to AD FS 2.0 in step 3 and steps 4 through 7 are skipped.

8. AD FS 2.0 provides a security token containing claims for access to Microsoft Dynamics CRM data.
9. The client sends the security token containing claims obtained from AD FS 2.0 to the Microsoft Dynamics CRM server.
10. The Microsoft Dynamics CRM server decrypts and validates the security token and presents the user with the requested information.

Note:
Please refer to the following URL for more details:
EXTERNAL CLIENTS
The flow for external access is largely unchanged from the flow described above for internal access. The major difference is that user authentication does not include a Kerberos ticket.

The authentication process for external clients is shown below:

Note:
Please refer to the following URL for more details:

When an AD FS proxy is used, the client is redirected to the proxy which then connects to the internal AD FS server where authentication occurs. For more details of AD FS proxy, please refer to the following link:
http://blogs.technet.com/b/askds/archive/2012/01/05/understanding-the-ad-fs-2-0-proxy.aspx

OTHER USEFUL REFERENCES

Windows 2012 R2 AD FS Federated Web SSO example:

Office 365 SSO example:

Sign-in Models for Office 365:
6. Load Balancing AD FS

Note:

It’s highly recommended that you have a working AD FS environment first before implementing the load balancer.

BASIC CONCEPTS

To provide resilience and high availability for your AD FS infrastructure, multiple Federation Servers and multiple Federation Proxy Servers (WAP’s in Windows 2012) should be deployed with a load balancer. This helps ensure that users can be authenticated and obtain access to the required systems and applications by constantly checking the health of the AD FS servers and only forwarding client authentication requests to functional servers.

LOAD BALANCED PORTS & SERVICES

The following table shows the ports that are load balanced:

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocols</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>443</td>
<td>TCP/HTTPS</td>
<td>All AD FS communications</td>
</tr>
</tbody>
</table>

PERSISTENCE (SERVER AFFINITY) REQUIREMENTS & OPTIONS

Since clients use a single TCP connection to the AD FS server to request and obtain the AD FS security token, session persistence (affinity) is not typically required for load balancing AD FS. The exception to this maybe when the application being accessed is also being load balanced. For more information please refer to the following Microsoft articles:

Note:

In this guide persistence is not used when configuring the Virtual Service. If it is required for situations such as those described above, source IP persistence can easily be enabled by modifying the VIP, setting Persistence Mode to Source IP, clicking Update and restarting HAProxy.

SERVER HEALTH CHECKING

By default the load balancer uses a TCP port connect to verify the health of back-end servers. For AD FS it’s recommended that more comprehensive checks are used.

For AD FS 2.0 a standard HTTPS negotiate check can be used that enables specific content on a particular page to read. If that content can be read the server is considered healthy.

For AD FS 3.0 which uses SNI (Server Name Indication) certificate bindings, the health-check must send the hostname inside the TLS handshake (Client Hello). The server is then able to choose the correct certificate based on this information. For this reason the standard HTTPS negotiate check cannot be used. Instead a custom script must be created that generates a correctly formed health-check. Please refer to page 19 for details of this custom script. In both cases the login page is used for the check:

For AD FS 2.0: https://<server-fqdn>/adfs/ls/idpinitiatedsignon.aspx
For AD FS 3.0: https://<server-fqdn>/adfs/ls/idpinitiatedsignon.htm
Note:
For more details on AD FS and load balancer health-checks please refer to:

LOAD BALANCER DEPLOYMENT
The following diagram shows a typical load balanced AD FS deployment.

Notes:
• Load balancers can be deployed as single units or as a clustered pair. Loadbalancer.org recommends deploying clustered pairs for HA and resilience
• In AD FS 3.0 (Windows 2012 R2) the Federation Proxy Server role is handled by Web Application Proxy rather than a dedicated, specific role service as with AD FS 2.0
7. Loadbalancer.org Appliance – the Basics

VIRTUAL APPLIANCE DOWNLOAD & DEPLOYMENT
A fully featured, fully supported 30 day trial is available if you are conducting a PoC (Proof of Concept) deployment. The VA is currently available for VMware, Virtual Box, Hyper-V, KVM and XEN and has been optimized for each Hypervisor. By default, the VA is allocated 1 CPU, 2GB of RAM and has an 8GB virtual disk. The Virtual Appliance can be downloaded here.

Note:
The same download is used for the licensed product, the only difference is that a license key file (supplied by our sales team when the product is purchased) must be applied using the appliance’s WebUI.

Note:
Please refer to the Administration Manual and the ReadMe.txt text file included in the VA download for more detailed information on deploying the VA using various Hypervisors.

INITIAL NETWORK CONFIGURATION
The IP address, subnet mask, default gateway and DNS settings can be configured in several ways as detailed below:

Method 1 - Using the Network Setup Wizard at the console
After boot up, follow the instructions on the console to configure the IP address, subnet mask, default gateway and DNS settings.

Method 2 - Using the WebUI
Using a browser, connect to the WebUI on the default IP address/port: http://192.168.2.21:9080
To set the IP address & subnet mask, use: Local Configuration > Network Interface Configuration
To set the default gateway, use: Local Configuration > Routing
To configure DNS settings, use: Local Configuration > Hostname & DNS

Method 3 - Using Linux commands
At the console, set the initial IP address using the following command:
 ip addr add <IP address>/<mask> dev eth0

At the console, set the initial default gateway using the following command:
 route add default gw <IP address> <interface>

At the console, set the DNS server using the following command:
 echo nameserver <IP address> >> /etc/resolv.conf

Note:
If method 3 is used, you must also configure these settings using the WebUI, otherwise the settings will be lost after a reboot.
ACCESSING THE WEB USER INTERFACE (WEBUI)

The WebUI can be accessed via HTTP at the following URL: http://192.168.2.21:9080/lbadmin
* Note the port number → 9080

The WebUI can be accessed via HTTPS at the following URL: https://192.168.2.21:9443/lbadmin
* Note the port number → 9443

(replace 192.168.2.21 with the IP address of your load balancer if it’s been changed from the default)

Login using the following credentials:

- **Username:** loadbalancer
 - **Password:** loadbalancer

 Note:
 To change the password, use the WebUI menu option: Maintenance > Passwords.

Once logged in, the WebUI will be displayed as shown on the following page:
Loadbalancer.org recommend that load balancer appliances are deployed in pairs for high availability. In this guide a single unit is deployed first, adding a secondary slave unit is covered in section 1 of the Appendix on page 26.

HA CLUSTERED PAIR CONFIGURATION

(shows v8.2.x)
8. Appliance & Server Configuration - AD FS 2.0

FEDERATION SERVERS

AD FS INSTALLATION & CONFIGURATION

- ADFS 2.0 for Windows 2008 R2 must be downloaded and installed manually on each AD FS server. If installed using Server Manager/Add Roles, v1.0 will be installed, NOT v2.0.
- AD FS update rollup 3 is available here: http://support.microsoft.com/kb/2790338/en-gb
- For information on configuring the Federation Servers please refer to the following Microsoft article: https://technet.microsoft.com/en-us/library/adfs2-help-how-to-configure-a-new-federation-server%28v=ws.10%29.aspx

LOAD BALANCER CONFIGURATION

Configuring Layer 7 Timeout Settings

1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Advanced Configuration
2. Set the client and server timeouts as shown below:

 ![Layer 7 - Advanced Configuration](image)

3. Set Client Timeout to 1800000, i.e. 30 minutes
 Note: You can also enter 30m rather than 1800000
4. Set Real Server Timeout to 1800000, i.e. 30 minutes
 Note: You can also enter 30m rather than 1800000
5. Click Update

Setting up the Virtual Service (VIP)

1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Virtual Services and click Add a New Virtual Service
2. Enter the following details:
3. Enter an appropriate name (Label) for the Virtual Service, e.g. **ADFS-Cluster**
4. Set the **Virtual Service IP address** field to the required IP address, e.g. **192.168.2.100**
5. Set the **Virtual Service Ports** field to **443**
6. Set the **Layer 7 Protocol** to **TCP Mode**
7. Click **Update**
8. Now click **Modify** next to the newly created Virtual Service
9. Change **Persistence Mode** to **None**
10. Change **Health Checks** to **Negotiate HTTPS**
11. Ensure **Check Port** is set to **443**
12. Set **Request to Send** to **adfs/ls/idpinitiatedsignon.aspx**
13. Set **Response Expected** to **Sign-In**
14. Click **Update**

Setting up the Real Servers (RIPs)

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created Virtual Service
2. Enter the following details:

 3. Enter an appropriate name (Label) for the first AD FS server, e.g. **ADFS1**
 4. Change the **Real Server IP Address** field to the required IP address, e.g. **192.168.2.110**
 5. Set the **Real Server Port** field to **443**
 6. Click **Update**
 7. Now repeat for your remaining AD FS server(s)
Applying the new Layer 7 Settings

1. Once the configuration is complete, use the **Restart/Reload HAProxy** button at the top of the screen to commit the changes, or use the WebUI option: **Maintenance > Restart Services**

DNS CONFIGURATION
Create a suitable DNS entry for the load balanced AD FS servers, i.e. for the VIP on the load balancer.

e.g. adfs.robtest.com

TESTING & VERIFICATION
The load balanced AD FS servers should now be accessible using the DNS entry for the VIP. Connect to the login page from a browser.

e.g. https://adfs.robtest.com/adfs/ls/idpinitiatedsignon.aspx

FEDERATION PROXY SERVERS

AD FS INSTALLATION & CONFIGURATION

- ADFS 2.0 for Windows 2008 R2 must be downloaded and installed manually on each AD FS Proxy Server. If installed using Server Manager/Add Roles, v1.0 will be installed, **NOT** v2.0.

 AD FS update rollup 3 is available here: http://support.microsoft.com/kb/2790338/en-gb

- When running the wizard, the Federation Service Name should be the load balanced VIP of the Federation Servers

- For information on configuring the Proxy Servers please refer to the following Microsoft article: https://technet.microsoft.com/en-us/library/adfs2-help-how-to-configure-a-new-federation-server-proxy%28v=ws.10%29.aspx

LOAD BALANCER CONFIGURATION

Configuring Layer 7 Timeout Settings

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Advanced Configuration**
2. Set the client and server timeouts as shown below:
3. Set Client Timeout to 1800000, i.e. 30minutes
 Note: You can also enter 30m rather than 1800000
4. Set Real Server Timeout to 1800000, i.e. 30minutes
 Note: You can also enter 30m rather than 1800000
5. Click Update

Setting up the Virtual Service (VIP)

1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Virtual Services and click Add a New Virtual Service
2. Enter the following details:

 ![Layer 7 - Advanced Configuration](image)

 3. Enter an appropriate name (Label) for the Virtual Service, e.g. ADFS-Proxy-Cluster
 4. Set the Virtual Service IP Address field to the required IP address, e.g. 192.168.2.100
 5. Set the Virtual Service Ports field to 443
 6. Set the Layer 7 Protocol to TCP Mode
 7. Click Update
 8. Now click Modify next to the newly created Virtual Service
 9. Change Persistence Mode to None
 10. Change Health Checks to Negotiate HTTPS
 11. Ensure Check Port is set to 443
 12. Set Request to Send to adfs/ls/idpinitiatedsignon.aspx
13. Set *Response Expected to Sign-In*
14. Click *Update*

Setting up the Real Servers (RIPs)

1. Using the WebUI, navigate to: *Cluster Configuration > Layer 7 – Real Servers* and click *Add a new Real Server* next to the newly created Virtual Service
2. Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>ADFS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>192.168.2.110</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>443</td>
</tr>
<tr>
<td>Re-Encrypt to Backend</td>
<td>✔</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
</tbody>
</table>

3. Enter an appropriate name (Label) for the first AD FS server, e.g. *ADFS1*
4. Change the *Real Server IP Address* field to the required IP address, e.g. *192.168.2.110*
5. Set the *Real Server Port* field to *443*
6. Click *Update*
7. Now repeat for your remaining AD FS server(s)

Applying the new Layer 7 Settings

1. Once the configuration is complete, use the *Restart/Reload HAProxy* button at the top of the screen to commit the changes, or use the WebUI option: *Maintenance > Restart Services*

DNS CONFIGURATION

Create a suitable DNS entry for the load balanced AD FS servers, i.e. for the VIP on the load balancer.

e.g. *adfs.robtest.com*

TESTING & VERIFICATION

The load balanced AD FS servers should now be accessible using the DNS entry for the VIP. Connect to the login page from a browser.

e.g. *https://adfs.robtest.com/adfs/ls/idpinitiatedsignon.aspx*
9. Appliance & Server Configuration - AD FS 3.0

FEDERATION SERVERS

AD FS INSTALLATION & CONFIGURATION

- Use Server Manager to install the AD FS Server Role on each Federation Server
- For more information on configuring AD FS please refer to the following Microsoft articles:

LOAD BALANCER CONFIGURATION

Configuring Layer 7 Timeout Settings

1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Advanced Configuration
2. Set the client and server timeouts as shown below:

```
Layer 7 - Advanced Configuration

Lock HAProxy Configuration (Deprecated)

Logging

Log Only Errors

Redispatch

Connection Timeout 4000 ms

Client Timeout 1800000 ms

Real Server Timeout 1800000 ms
```

3. Set Client Timeout to 1800000, i.e. 30 minutes
 Note: You can also enter 30m rather than 1800000
4. Set Real Server Timeout to 1800000, i.e. 30 minutes
 Note: You can also enter 30m rather than 1800000
5. Click Update

Setting up the SNI Health Check

1. Using an editor, create a file named adfs-check.sh in /var/lib/loadbalancer.org/check/
2. This can be done using an editor on the appliance such as vim or vi if you're familiar with Linux or by using the built-in editor available in WinSCP. WinSCP is a free Windows utility that enables files in a Linux filesystem to be easily created, viewed and modified from a Windows PC/server. It's available here: http://winscp.net/eng/download.php
Note:
From v8.2.2, the appliance includes an external health check script called “sni-check.sh”. The contents of this file are identical to the content detailed in the next step. Therefore, for v8.2.2, select the external check script “sni-check.sh” rather than creating a new file, then modify this file to suit your environment as described below:

3. Copy/paste the following into the file:

```bash
#!/bin/bash
# Script to check SNI enabled servers are healthy
# $3 contains the IP address of the real server and is passed by the
# calling program (HAProxy)

REAL_SERVER_IP=$3
SNI_HOST="adfs.robstest.com"
SNI_URI="adfs/ls/idpinitiatedsignon.htm"
CHECK_VALUE="Sign in"

# check if previous instance of health check is running & kill if req'd
PIDFILE="/var/run/sni-check-$SNI_HOST.pid"
if [ -f $PIDFILE ]
then
    kill -9 `cat $PIDFILE` > /dev/null 2>&1
fi

# write the process ID to the PID file
echo "$$" > $PIDFILE

# check that the ADFS login page is accessible
CURL_OUTPUT=/usr/bin/curl -k -m 5 --resolve-small-names -L -s - # ADFS login page
https://$SNI_HOST:$REAL_SERVER_IP

if [[ $CURL_OUTPUT == *$CHECK_VALUE* ]]; then
    exit 0
else
    exit 1
fi
```

4. Set the SNI host and URI parameters at the top of the file to the required values, e.g.

```bash
SNI_HOST="adfs.robstest.com"
SNI_URI="adfs/ls/idpinitiatedsignon.htm"
```

Note:
This SNI URI is the default ADFS sign-in URI and should not normally need changing.
5. Save the file
6. Set the file permissions to 755, under WinSCP right click the file, click properties and set the permissions as shown below:

<table>
<thead>
<tr>
<th>Permissions</th>
<th>Owner</th>
<th>Group</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓ R</td>
<td>✓ W</td>
<td>✓ X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set UID</td>
<td>Set GiD</td>
<td>Sticky bit</td>
</tr>
<tr>
<td>Octal:</td>
<td>0755</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. The file is selected when configuring the VIPs

Setting up the Virtual Service (VIP)

1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Virtual Services and click **Add a New Virtual Service**
2. Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>ADFS-Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Service IP Address</td>
<td>192.168.2.100</td>
</tr>
<tr>
<td>Ports</td>
<td>443</td>
</tr>
<tr>
<td>Layer 7 Protocol</td>
<td>TCP Mode</td>
</tr>
</tbody>
</table>

3. Enter an appropriate name (Label) for the Virtual Service, e.g. **ADFS-Cluster**
4. Set the Virtual Service IP address field to the required IP address, e.g. **192.168.2.100**
5. Set the Virtual Service Ports field to **443**
6. Set the Layer 7 Protocol to **TCP Mode**
7. Click **Update**
8. Now click **Modify** next to the newly created Virtual Service
9. Change Persistence Mode to **None**
10. Change Health Checks to **External Check**
11. Set Check Script to **sni-check.sh**

Note:

sni-check.sh is listed by default for v8.2.2 and later, for earlier versions it will appear once it has been created as described on page 19.

12. Click **Update**
Setting up the Real Servers (RIPs)

1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Real Servers and click Add a new Real Server next to the newly created Virtual Service
2. Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>ADFS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>192.168.2.110</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>443</td>
</tr>
<tr>
<td>Re-Encrypt to Backend</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
</tbody>
</table>

3. Enter an appropriate name (Label) for the first AD FS server, e.g. ADFS1
4. Change the Real Server IP Address field to the required IP address, e.g. 192.168.2.110
5. Set the Real Server Port field to 443
6. Click Update
7. Now repeat for your remaining AD FS server(s)

Applying the new Layer 7 Settings

1. Once the configuration is complete, use the Restart/Reload HAProxy button at the top of the screen to commit the changes, or use the WebUI option: Maintenance > Restart Services

DNS CONFIGURATION

Create a suitable DNS entry for the load balanced AD FS servers, i.e. for the VIP on the load balancer.

e.g. adfs.robtest.com

TESTING & VERIFICATION

The load balanced AD FS servers should now be accessible using the DNS entry for the VIP. Connect to the login page from a browser.

e.g. https://adfs.robtest.com/adfs/ls/idpinitiatedsignon.htm

FEDERATION PROXY SERVERS (WEB APPLICATION PROXIES)

AD FS INSTALLATION & CONFIGURATION

- Use Server Manager to install the Web Application Proxy Server Role on each Proxy Server
- When specifying the Federation Service Name, this should be the load balanced VIP of the Federation Servers
- For more information on configuring Web Application Proxy for AD FS please refer to the following Microsoft articles:
LOAD BALANCER CONFIGURATION

Configuring Layer 7 Timeout Settings

1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Advanced Configuration
2. Set the client and server timeouts as shown below:

![Layer 7 - Advanced Configuration](image)

3. Set Client Timeout to 1800000, i.e. 30 minutes
 Note: You can also enter 30m rather than 1800000
4. Set Real Server Timeout to 1800000, i.e. 30 minutes
 Note: You can also enter 30m rather than 1800000
5. Click Update

Setting up the SNI Health Check

1. Configure the SNI health-check script as described on page \(\text{19} \).

Setting up the Virtual Service (VIP)

1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Virtual Services and click Add a New Virtual Service
2. Enter the following details:
3. Enter an appropriate name (Label) for the Virtual Service, e.g. **ADFS-Proxy-Cluster**
4. Set the **Virtual Service IP address** field to the required IP address, e.g. **192.168.2.100**
5. Set the **Virtual Service Ports** field to **443**
6. Set the **Layer 7 Protocol** to **TCP Mode**
7. Click **Update**
8. Now click **Modify** next to the newly created Virtual Service
9. Change **Persistence Mode** to **None**
10. Change **Health Checks** to **External Check**
11. Set **Check Script** to **sni-check.sh**

Note:
sni-check.sh is listed by default for v8.2.2 and later, for earlier versions it will appear once it has been created as described on page 19.

12. Click **Update**

Setting up the Real Servers (RIPs)

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created Virtual Service
2. Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>ADFS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>192.168.2.110</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>443</td>
</tr>
<tr>
<td>Re-Encrypt to Backend</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
</tbody>
</table>

3. Enter an appropriate name (Label) for the first AD FS server, e.g. **ADFS1**
4. Change the **Real Server IP Address** field to the required IP address, e.g. **192.168.2.110**
5. Set the **Real Server Port** field to **443**
6. Click **Update**
7. Now repeat for your remaining AD FS server(s)

Applying the new Layer 7 Settings

1. Once the configuration is complete, use the **Restart/Reload HAProxy** button at the top of the screen to commit the changes, or use the WebUI option: **Maintenance > Restart Services**

DNS CONFIGURATION
Create a suitable DNS entry for the load balanced AD FS servers, i.e. for the VIP on the load balancer.

e.g. **adfs.robtest.com**

TESTING & VERIFICATION
The load balanced AD FS servers should now be accessible using the DNS entry for the VIP. Connect to the login page from a browser.

e.g. **https://adfs.robtest.com/adfs/ls/idpinitiatedsignon.htm**

10. Technical Support
For more details about configuring the appliance and assistance with designing your deployment please don’t hesitate to contact the support team using the following email address: **support@loadbalancer.org**

11. Further Documentation

12. Conclusion
Loadbalancer.org appliances provide a very cost effective and flexible solution for highly available load balanced Active Directory Federation Server environments.
13. Appendix

1 - CLUSTERED PAIR CONFIGURATION – ADDING A SLAVE UNIT

If you initially configured just the master unit and now need to add a slave - our recommended procedure, please refer to the relevant section below for more details:

Note:

A number of settings are not replicated as part of the master/slave pairing process and therefore must be manually configured on the slave appliance. These are listed below:

- Hostname & DNS settings
- Network settings including IP addresses, bonding configuration and VLANs
- Routing configuration including default gateways and static routes
- Date & time settings
- Physical – Advanced Configuration settings including Internet Proxy IP address & port, Firewall table size, SMTP relay and Syslog server
- SNMP settings
- Graphing settings
- Firewall Script & Firewall Lockdown Script settings
- Software updates

Version 7:

Please refer to **Chapter 8 – Appliance Clustering for HA** in the [v7 Administration Manual](#).

Version 8:

To add a slave node – i.e. create a highly available clustered pair:

- Deploy a second appliance that will be the slave and configure initial network settings
- Using the WebUI, navigate to: Cluster Configuration > High-Availability Configuration

![Create a Clustered Pair](loadbalancer.org)

Local IP address

192.168.1.20

IP address of new peer

192.168.1.21

Password for loadbalancer user on peer

Add new node
• Specify the IP address and the loadbalancer users password (the default is 'loadbalancer') for the slave (peer) appliance as shown above

• Click **Add new node**

• The pairing process now commences as shown below:

![Create a Clustered Pair](image)

• Once complete, the following will be displayed:

![High Availability Configuration - master](image)

• To finalize the configuration, restart heartbeat and any other services as prompted in the blue message box at the top of the screen

Note:
Clicking the **Restart Heartbeat** button on the master appliance will also automatically restart heartbeat on the slave appliance.

Note:
Please refer to chapter 9 – Appliance Clustering for HA in the Administration Manual for more detailed information on configuring HA with 2 appliances.
2 - COMPANY CONTACT INFORMATION

<table>
<thead>
<tr>
<th>Website</th>
<th>URL: www.loadbalancer.org</th>
</tr>
</thead>
</table>
| **North America (US)** | Loadbalancer.org, Inc.
4250 Lancaster Pike, Suite 120
Wilmington
DE 19805
USA
Tel: +1 888.867.9504
Fax: +1 302.213.0122
Email (sales): sales@loadbalancer.org
Email (support): support@loadbalancer.org |
| **North America (Canada)** | Loadbalancer.org Ltd
300-422 Richards Street
Vancouver, BC
V6B 2Z4
Canada
Tel: +1 866.998.0508
Fax: +1 302.213.0122
Email (sales): sales@loadbalancer.org
Email (support): support@loadbalancer.org |
| **Europe (UK)** | Loadbalancer.org Ltd.
Compass House
North Harbour Business Park
Portsmouth, PO6 4PS
UK
Tel: +44 (0)330 3801064
Fax: +44 (0)870 4327672
Email (sales): sales@loadbalancer.org
Email (support): support@loadbalancer.org |
| **Europe (Germany)** | Loadbalancer.org GmbH
Tengstraße 27
D-80798
München
Germany
Tel: +49 (0)89 2000 2179
Fax: +49 (0)30 920 383 6495
Email (sales): vertrieb@loadbalancer.org
Email (support): support@loadbalancer.org |