Table of Contents

About this Guide... 4
Appliances Supported.. 4
Microsoft Exchange Software Versions Supported.. 4
Loadbalancer.org Software Versions Supported.. 4
Exchange Server 2013.. 5
Exchange 2013 Server Roles.. 5
Load Balancing Exchange 2013.. 6
 Load Balancing & HA Requirements... 6
 Client Access Array.. 6
 Database Availability Group (DAG)... 6
 Persistence (aka Server Affinity)... 6
 Port Requirements... 6
 HTTPS Namespaces & IP addresses... 7
Deployment Overview.. 8
Virtual Service (VIP) Requirements... 8
Clustered Pair Configuration for HA... 8
Load Balancer Deployment Methods.. 9
 Layer 4... 9
 Direct Server Return (DR Mode).. 9
 Network Address Translation (NAT Mode)... 10
 Layer 7 SNAT Mode.. 11
 Our Recommendation... 12
 Helping you Choose... 12
Exchange 2013 Configuration for Load Balancing... 14
 External Access Domain.. 14
 Virtual Directories.. 14
 Outlook Anywhere... 15
 Autodiscover... 15
 Certificates... 17
 Send & Receive Connectors... 17
 Adding Connectors... 17
 IIS Restart... 18
 Exchange Server Configuration Steps (Depending on appliance Deployment Method Used)... 18
 DR Mode – Solve the ARP problem.. 18
 NAT Mode – Set the Exchange Servers Default Gateway.................................. 18
 SNAT Mode.. 18
Loadbalancer.org Appliance – the Basics.. 19
 Network Configuration... 19
 Accessing the Web User Interface (WUI)... 20
Appliance Configuration for Exchange 2013 – Using DR Mode.................................... 21
 Configure VIP1 – CAS Role HTTPS Services.. 21
 a) Setting up the Virtual Service... 21
 b) Setting up the Real Servers... 22
 Configure VIP2 – CAS Role IMAP4 / POP3 Services.. 23
 a) Setting up the Virtual Service... 23
 b) Setting up the Real Servers... 24
 Configure VIP3 – CAS Role SMTP Services.. 25
 a) Setting up the Virtual Service... 25
 b) Setting up the Real Servers... 26
 Configure HTTP to HTTPS OWA Redirect... 26
Appliance Configuring for Exchange 2013 – Using NAT Mode... 27
 Configure VIP1 – CAS Role HTTPS Services.. 27
 a) Setting up the Virtual Service.. 27
 b) Setting up the Real Servers.. 28
 Configure VIP2 – CAS Role IMAP4 / POP3 Services.. 29
 a) Setting up the Virtual Service.. 29
 b) Setting up the Real Servers.. 30
 Configure VIP3 – CAS Role SMTP Services.. 31
 a) Setting up the Virtual Service.. 31
 b) Setting up the Real Servers.. 32
 Configure HTTP to HTTPS OWA Redirect.. 32
Appliance Configuring for Exchange 2013 – Using SNAT mode... 33
 Configure Layer 7 Global Settings.. 33
 Configure VIP1 – CAS Role HTTPS Services.. 34
 a) Setting up the Virtual Service.. 34
 b) Setting up the Real Servers.. 35
 Configure VIP2 – CAS Role IMAP4 / POP3 Services.. 36
 a) Setting up the Virtual Service.. 36
 b) Setting up the Real Servers.. 37
 Configure VIP3 – CAS Role SMTP Services.. 38
 a) Setting up the Virtual Service.. 38
 b) Setting up the Real Servers.. 39
 Configure HTTP to HTTPS OWA Redirect.. 39
Finalizing the Configuration.. 39
Testing & Verification.. 40
 Useful Exchange 2013 & Other Microsoft Tools.. 40
 Testing Mailflow.. 40
 Testing SMTP using Telnet.. 41
 Microsoft Testing Tool... 42
 Useful Appliance based Tools & Features... 42
 Using System Overview... 42
 Layer 4 Status Report... 43
 Layer 7 Statistics Report... 43
 Appliance Logs.. 43
Technical Support.. 44
Conclusion.. 44
Appendix... 45
 1 – Enabling full Transparency using Tproxy (applies to Layer 7 SNAT mode).............................. 45
 2 – Limiting inbound SMTP Connections using Firewall Rules (applies to Layer 7 SNAT mode)...... 46
 3 – Using a Layer 4 Virtual Service for SMTP.. 47
 4 – Configuring an HTTP to HTTPS redirect for OWA... 47
 5 – Clustered Pair Configuration – Adding a Slave Unit... 47
 6 – Company Contact Information... 48
About this Guide

This guide details the configuration of Loadbalancer.org appliances for deployment with Microsoft Exchange 2013. It includes details of ports/services that must be load balanced, topology considerations for the various Exchange 2013 server roles and also steps on how to configure the appliances.

For an introduction on setting up the appliance as well as more technical information, please also refer to our quick-start guides and full administration manuals which are available at the following links:

Appliances Supported

All our products can be used with Exchange 2013. The complete list of models is shown below:

- Enterprise R16
- Enterprise
- Enterprise MAX
- Enterprise 10G
- Enterprise R320
- Enterprise VA
- Enterprise VA R16

For a full specification comparison of these models please refer to: http://www.loadbalancer.org/matrix.php

Microsoft Exchange Software Versions Supported

- Microsoft Exchange 2013 CU2 (15.0.712.24) and later

Loadbalancer.org Software Versions Supported

- v7.5 and later

N.B. this guide includes configuration steps for v7.6 & later. For older versions of the appliance please contact loadbalancer.org sales or support
Exchange Server 2013

Exchange 2013 is Microsoft's latest enterprise level messaging and collaboration server. Exchange 2013 has been designed for simplicity of scale, hardware utilization, and failure isolation. This has greatly simplified both the deployment process and the implementation of a load balancer.

Exchange 2013 Server Roles

Exchange 2013 has been consolidated into two roles, these are: the Client Access Server role and the Mailbox Server role.

The functionality of the Hub Transport server role has split between the CAS role (the Front End Transport Service) and the Mailbox Server role (the Transport Service and the Mailbox Transport Service).

The Edge Transport server role has been removed.

<table>
<thead>
<tr>
<th>Role</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Client Access Server | The Client Access Server role is comprised of three components, client protocols, SMTP, and a UM Call Router. The CAS role is a thin, protocol session stateless server that is organized into a load balanced configuration. Unlike previous versions, session affinity is not required at the load balancer. This is because logic now exists in CAS to authenticate the request, and then route the request to the Mailbox server that hosts the active copy of the mailbox database.

 N.B. A number of issues have been seen with IOS-7 on the iPhone when used with ActiveSync. Upgrading to IOS-8 resolved these issues. |
| Mailbox Server | The Mailbox Server role now hosts all the components and/or protocols that process, render and store the data. No clients will ever connect directly to the Mailbox server role; all client connections are handled by the Client Access Server role. Mailbox Servers can be added to a Database Availability Group, thereby forming a high available unit that can be deployed in one or more datacenters. |

CAS Array Object

This concept has been removed and there is no longer any need to define a CAS array object.

Client Access Protocols

Outlook clients no longer use RPC to access their mailbox. This is now handled only by RPC over HTTPS (aka Outlook Anywhere). Native RPC is only used for server to sever communication. POP3 and IMAP4 continue to be supported as with previous versions.

External SMTP Mail flow

External SMTP communication is now handled by the Front End Transport Service on the CAS role.

Exchange Administration

The Exchange Admin Center (EAC) is the new web-based management console in Microsoft Exchange Server 2013. The EAC replaces the Exchange Management Console (EMC) and the Exchange Control Panel (ECP), which were the two interfaces used to manage Exchange Server 2010. Note that “ECP” is still the name of the virtual directory used by the EAC.
Load Balancing Exchange 2013

Load Balancing & HA Requirements
In Exchange Server 2013, there are two basic building blocks – the Client Access Array and the Database Availability Group (DAG). Each provides a unit of high availability and fault tolerance that are decoupled from one another. Multiple Client Access Servers make up the Client Access Array, while multiple Mailbox Servers form the DAG.

Client Access Array
As mentioned earlier, the 2010 concept of a CAS Array no longer exists. In 2013, a Client Access Array is simply a group of two or more Client Access Servers. The load balancer then enables resilience and HA.

Database Availability Group (DAG)
A DAG is a group of up to 16 Mailbox Servers that hosts a set of databases and provides automatic database-level recovery from failures that affect individual servers or databases.

NOTE: DAG's utilize Microsoft Clustering Services which cannot be enabled on the same server as Microsoft Network Load Balancing (NLB). Therefore, using Microsoft NLB is not an option in this case. Using a Loadbalancer.org hardware or virtual appliance provides an ideal solution.

Persistence (aka Server Affinity)
Due to Exchange 2013's new architecture, all sessions to the CAS servers are stateless and therefore persistence/affinity is no longer required on the load balancer.

Port Requirements
The following table shows the port list that must be load balanced. Some services such as IMAP4 or POP3 may not be used in your environment.

<table>
<thead>
<tr>
<th>TCP Port</th>
<th>Role(s)</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>CAS</td>
<td>Inbound SMTP</td>
</tr>
<tr>
<td>110</td>
<td>CAS</td>
<td>POP3 clients</td>
</tr>
<tr>
<td>143</td>
<td>CAS</td>
<td>IMAP4 clients</td>
</tr>
<tr>
<td>443</td>
<td>CAS</td>
<td>HTTPS (Outlook Web App, AutoDiscovery, Web Services, ActiveSync,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outlook Anywhere, Offline Address Book, Exchange Administration Center)</td>
</tr>
<tr>
<td>993</td>
<td>CAS</td>
<td>Secure IMAP4 clients</td>
</tr>
<tr>
<td>995</td>
<td>CAS</td>
<td>Secure POP3 clients</td>
</tr>
</tbody>
</table>
HTTPS Namespaces & IP addresses

The following examples show 2 different approaches to HTTPS namespace configuration and the related load balancing considerations for each.

Example 1 – simple namespace configuration

<table>
<thead>
<tr>
<th>Namespace</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>mail.robstest.com</td>
<td>Outlook Web App, ActiveSync, Outlook Anywhere, Offline Address Book, Exchange Web Services</td>
</tr>
<tr>
<td>autodiscover.robstest.com</td>
<td>Auto Discover</td>
</tr>
</tbody>
</table>

Notes:
- In this case a single VIP is used for all HTTPS namespaces / services
- Both DNS entries should then point at the same VIP
- This method is simple to setup, but only permits a single Exchange URL to be health checked. However, a successful full HTTPS service check on the default website (i.e. the CAS related site) is a good indication that the Virtual Directories/applications are functioning correctly

Example 2 – expanded namespace configuration

<table>
<thead>
<tr>
<th>Namespace</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>owa.robstest.com</td>
<td>Outlook Web Access</td>
</tr>
<tr>
<td>outlook.robstest.com</td>
<td>Outlook Anywhere</td>
</tr>
<tr>
<td>ews.outlook.com</td>
<td>Exchange Web Services</td>
</tr>
<tr>
<td>autodiscover.robstest.com</td>
<td>Autodiscover</td>
</tr>
<tr>
<td>activesync.robstest.com</td>
<td>ActiveSync</td>
</tr>
<tr>
<td>oab.robstest.com</td>
<td>Offline Address Book</td>
</tr>
</tbody>
</table>

Notes:
- In this case multiple VIPs are used – one for each HTTPS namespace / service
- Each related DNS entry should then point at the corresponding VIP
- This method is more complex to setup, but does enable more granular health checks to be configured

NOTE: This guide uses the config of example 1 above, i.e. a single IP address for all services. The health check is configured to regularly open the iisstart.htm page on each server and verify that the word 'microsoft' can be read.
Deployment Overview

There are multiple ways to deploy Exchange, but in this example two servers are used. Each server hosts the CAS & Mailbox roles in a DAG configuration. This provides high availability and uses a minimum number of Exchange Servers.

Clients then connect to the Virtual Services (VIPs) on the load balancer rather than connecting directly to a one of the real servers. These connections are then load balanced across the back-end servers to distribute the load according to the load balancing algorithm selected.

Virtual Service (VIP) Requirements

To provide load balancing and HA for Exchange, the following VIPs are required:

- HTTPS & HTTP (the HTTP VIP is only required for redirecting to HTTPS)
- SMTP

Optionally, additional VIPs may be required for the following services:

- IMAP4
- POP3

N.B. IMAP4 and POP3 are not typically used. Therefore these VIPs are not generally required.

Clustered Pair Configuration for HA

In this guide a single unit is deployed first, adding a secondary slave unit is covered in section 5 of the Appendix.
Load Balancer Deployment Methods

The load balancer can be deployed in one of 3 fundamental ways, these are described below.

Layer 4

Two Layer 4 methods are available – ‘DR Mode’ and ‘NAT Mode’.

Direct Server Return (DR Mode)

In this mode, traffic from the client to the Exchange Servers passes via the load balancer, return traffic passes directly back to the client which maximizes performance. DR mode works by changing the destination MAC address of the incoming packet on the fly, which is very fast. This mode is transparent by default meaning that the Exchange Servers see the real client IP address and not the IP address of the load balancer.

Notes:

- One-arm DR mode works by changing the destination MAC address of the incoming packet on the fly which is very fast
- The ‘ARP problem’ must be solved on each Exchange Server (please refer to page 18)
- The VIP and RIPs must be in the same switch fabric / logical network. They can be on different subnets, provided there are no router hops between them. If multiple subnets are used, an IP address in each subnet must be defined on the load balancer
- Layer 4 DR mode is transparent, i.e. servers will log the source IP address of the client
- The source IP address of reply packets is the VIP address
Network Address Translation (NAT Mode)

This mode requires the implementation of a two-arm infrastructure with an internal and external subnet to carry out the translation (the same way a firewall works). The real servers (i.e., the Exchange Servers) must have their default gateway configured to point at the load balancer. It also offers high performance and like DR mode is transparent by default.

Notes:

- In two-arm NAT mode the load balancer translates all requests from the external Virtual Service to the internal Exchange Servers.
- Normally eth0 is used for the *internal* network and eth1 is used for the *external* network although this is not mandatory. If the Exchange Servers require Internet access, Autonat should be enabled using the WUI option: *Edit Configuration > Layer 4 – Advanced Configuration*, select the *external* interface.
- The default gateway on each Exchange Server must be an IP address on the load balancer. This should be a floating IP address to allow failover to the slave device.
- Layer 4 NAT mode is transparent, i.e., servers will log the source IP address of the client.
- The source IP address of the reply packets is the VIP address.
Layer 7 SNAT Mode

Layer 7 load balancing uses a proxy (HAProxy) at the application layer. Inbound requests are terminated on the load balancer, and HAProxy generates a new request to the chosen real server. As a result, Layer 7 is a slower technique than DR or NAT mode at Layer 4. Layer 7 is generally chosen when the network topology prohibits the use of the layer 4 methods.

Single-arm and two-arm configurations are supported as shown below. In both cases return traffic passes via the load balancer. Since layer 7 works as a proxy, there is not need to set the appliance as the gateway.

One-Arm Configuration

Two-Arm Configuration

Notes:

- SNAT mode works as a full proxy, therefore the gateway does not need to be the load balancer
- The Exchange Servers can be located on any accessible subnet including across the Internet or WAN
- No Exchange Server changes are required
- This method is non-transparent, i.e. the load balancer proxies the application traffic to the Exchange Servers so that the source IP address of all traffic is the load balancer
- Reply packets have their source IP address set as the interface of the load balancer
Our Recommendation

One-arm layer 4 DR mode is the fastest option so where possible this is recommended. If this is not feasible for any reason – e.g. the Exchange Servers are located on a different subnet to the VIP, then two-arm layer 4 NAT mode is suggested as this also offers high performance.

In situations where the network topology does not allow DR mode to be used (e.g. because VIPs & RIPv not located in different subnets) or NAT mode (e.g. because its not feasible to set the Exchange Servers default gateway to be the load balancer), layer 7 SNAT mode is suggested since the Exchange Servers can be positioned on any routeable network and no Exchange Server configuration changes are required.

Helping you Choose

```
START

Will the VIP and the Exchange Servers be located in the same subnet and within the same switch fabric? YES

Use layer 4 DR Mode

NO

Is it possible to set the default gateway on the Exchange Servers to be the load balancer? YES

Use layer 4 NAT Mode

NO

Use layer 7 SNAT Mode
```
NOTE: SNAT Mode Source IP Address Transparency

It's important to remember that when using SNAT mode (HAProxy), the source IP address of packets reaching the Exchange Servers will be the IP address of the load balancer and not the source IP address of the client.

If this is an issue, please refer to section 4 in the Appendix for details on using Tproxy. Tproxy enables the original source IP address to be maintained, but requires that separate subnets are used, and also requires that the load balancer becomes the default gateway for the Exchange Servers. Enabling Tproxy is a global setting and therefore effects all Virtual Services configured on the load balancer which may not always be desirable.

Transparency is normally only an issue for SMTP traffic at the receive connector. System Administrators typically want to lock down receive connectors to accept SMTP connections only from a controlled set of devices such as external smart mail hosts, printers, networked photocopiers etc.

If transparency for SMTP is the only issue, there are a couple of options available to address this:

Option 1 – Enable full layer 7 transparency using Tproxy. This is covered in section 1 of the Appendix.

Option 2 – Use the load balancers on-board firewall to lock down inbound SMTP connections rather than doing this at the receive connector. This is covered in section 2 of the Appendix.

Option 3 – Configure a layer 4 Virtual Service for SMTP rather than a layer 7 (HAProxy) based Virtual Service. Layer 4 is transparent by default so the source IP address is maintained. This is covered in section 3 of the Appendix.
Exchange 2013 Configuration for Load Balancing

External Access Domain
This can be configured using the EAC. Select servers > servers and then click the spanner shaped icon. This will open the form shown below. All CAS servers should be configured with a valid external name, e.g. mail.robtest.com

Virtual Directories
For multi-namespace environments, individual virtual directories should be configured for each service. Note that all virtual directories are automatically set to be the same as the external access domain when this is set, but can be set individually using the EAC option: server > virtual directories as shown below:
Outlook Anywhere

This can be configured using the EAC. Select servers > servers and then click the edit icon, this will open the Outlook Anywhere config screen as shown below. The external and internal names should be configured as required, e.g. `mail.robtest.com`

![Outlook Anywhere config screen](image)

Autodiscover

Internal

A new Active Directory object named the service connection point (SCP) is created on the server where you install the Client Access Server role. The SCP object contains the authoritative list of Autodiscover service URLs for the forest. The `Set-ClientAccessServer` cmdlet is used to update the SCP object as shown in the following example:

```powershell
Set-ClientAccessServer -Identity "EXCH01" -AutoDiscoverServiceInternalUri "https://autodiscover.robtest.com/autodiscover/autodiscover.xml"
```

Once configured, the **Test Email AutoConfiguration** option available when right clicking the Outlook icon in the taskbar can be used to view these settings as shown below:

![Test Email AutoConfiguration](image)

N.B. The minimum Outlook client for Exchange 2013 is Outlook 2007, 2003 is NOT supported.
External

When Outlook 2007/2010 is started on a client that is not domain-connected, it first tries to locate the Autodiscover service by looking up the SCP object in Active Directory. Because the client is unable to contact Active Directory, it tries to locate the Autodiscover service by using Domain Name System (DNS). In this scenario, the client will determine domain of the user's e-mail address, and then check DNS by using two predefined URLs. For the SMTP domain robtest.com, Outlook will try the following two URLs to try to connect to the Autodiscover service:

https://robtest.com/autodiscover/autodiscover.xml
https://autodiscover.robtest.com/autodiscover/autodiscover.xml

Again, this can be seen using the Test Email AutoConfiguration option as shown below:
Certificates

The recommended approach is to use SAN certificates and specify all required namespaces. It's also possible to use wildcard certs if preferred. Certificate requests can be generated using either the graphical based Exchange Admin Center or the command based Exchange Management Shell.

*** IMPORTANT!! - the same certificate and private key must be deployed on all Exchange Servers ***

NOTE: SSL offloading for Exchange 2013 is supported from SP1 as detailed in the following Microsoft article: http://technet.microsoft.com/library/dn635115(EXCHG.150).aspx. However, for scalability and effective load sharing we recommend terminating SSL on the Exchange Servers rather than on the load balancer.

Send & Receive Connectors

By default no send connectors are created when Exchange 2013 is installed. A send connector must be created manually that either sends outbound email messages to a smart host or directly to their recipient using DNS.

For a dual role server that has both the CAS and Mailbox roles, five receive connectors are automatically created by default. The table below lists these connectors:

<table>
<thead>
<tr>
<th>Receive Connector</th>
<th>Role</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default <server name></td>
<td>Mailbox</td>
<td>Accepts connections from Mailbox servers running the Transport service and from Edge servers</td>
</tr>
<tr>
<td>Client Proxy <server name></td>
<td>Mailbox</td>
<td>Accepts connections from front-end servers. Typically, messages are sent to a front-end server over SMTP</td>
</tr>
<tr>
<td>Default FrontEnd <server name></td>
<td>CAS</td>
<td>Accepts connections from SMTP senders over port 25. This is the common messaging entry point into your organization</td>
</tr>
<tr>
<td>Outbound Proxy Frontend <server name></td>
<td>CAS</td>
<td>Accepts messages from a Send Connector on a back-end server, with front-end proxy enabled</td>
</tr>
<tr>
<td>Client Frontend <server name></td>
<td>CAS</td>
<td>Accepts secure connections, with Transport Layer Security (TLS) applied</td>
</tr>
</tbody>
</table>

For more information on mail connectors please refer to the following Technet article:

Adding Connectors

Connectors can be created using the Exchange Administration Center (EAC) or the Exchange Management Shell. Receive connectors must use a unique combination of IP address bindings, port number assignments, and remote IP address ranges from which mail is accepted. Multiple send connectors can created, this is typically done to enables multiple outbound email routes to specified that have different costs.

The exact connector configuration depends on your specific environment and requirements.
IIS Restart (Important step!)

Once all Exchange configuration is complete restart IIS on each server to ensure all changes are applied. This can be done using the following command in a command or Powershell Window:

`iisreset /force`

Exchange Server Configuration Steps (Depending on appliance Deployment Method Used)

DR Mode – Solve the ARP problem

The 'ARP problem' must be solved on each Exchange Server for DR mode to work. For detailed steps on solving the ARP problem, please refer to the quick start guide available at the following link:

If you're using Windows 2008 then search this document for “Windows server 2008”

If you're using Windows 2012 then search this document for “Windows server 2012”

NAT Mode – Set the Exchange Servers Default Gateway

When using Layer 4 NAT mode, the default gateway on each Exchange Server MUST be set to be the loadbalancer. It's recommended that a floating IP address is used rather than the interface IP address. This makes it possible for the load balancer to failover to a slave unit and successfully bring up the gateway address.

SNAT Mode

When using SNAT mode, no configuration changes to the Exchange Servers are required.
Loadbalancer.org Appliance – the Basics

Network Configuration
The IP address, default gateway and DNS settings can be configured in several ways depending on the version as detailed below.

Configure the IP address, Default Gateway & DNS Settings

Using the Network Setup Wizard at the console:
After boot, follow the console instructions to configure the IP address, gateway and DNS settings.

Using the WUI:
Using a browser, connect to the WUI on the default IP address/port: http://192.168.2.21:9080
to set the IP address use: Local Configuration > Network Interface Configuration
to set the default gateway use: Local Configuration > Routing
to configure DNS settings use: Local Configuration > Hostname & DNS

Using Linux commands:
At the console, set the initial IP address using the following command:
ip addr add <IP address>/<mask> dev eth0
e.g. ip addr add 192.168.2.10/24 dev eth0
At the console, set the initial default gateway using the following command:
route add default gw <IP address> <interface>
e.g. route add default gw 192.168.2.254 eth0
At the console, set the DNS server using the following command:
echo nameserver <IP address> >> /etc/resolv.conf
e.g. echo nameserver 192.168.64.1 >> /etc/resolv.conf

N.B. If this method is used, you must also configure these settings using the WUI, otherwise settings will be lost after a reboot
Accessing the Web User Interface (WUI)

The WUI can be accessed from a browser at:

* Note the port number → 9080

(replace 192.168.2.21 with the IP address of your load balancer if its been changed from the default)

Username: loadbalancer
Password: loadbalancer

Once you have entered the logon credentials the Loadbalancer.org Web User Interface will be displayed as shown below:

The screen shot below shows the v7.6 WUI once logged in:
NOTE: It's highly recommended that you have a working Exchange 2013 environment first before implementing the load balancer.

Configure VIP1 – CAS Role HTTPS Services

a) Setting up the Virtual Service

- Using the WUI, go to Cluster Configuration > Layer 4 – Virtual Service and click [Add a New Virtual Service]
- Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS-HTTPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Service</td>
<td>192.168.30.10</td>
</tr>
<tr>
<td>IP Address</td>
<td>192.168.30.10</td>
</tr>
<tr>
<td>Ports</td>
<td>443</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP</td>
</tr>
<tr>
<td>Forwarding Method</td>
<td>Direct Routing</td>
</tr>
</tbody>
</table>

- Enter an appropriate label for the VIP, e.g. CAS-HTTPS
- Set the Virtual Service IP address field to the required IP address, e.g. 192.168.30.10
- Set the Virtual Service Ports field to 443
- Leave Protocol set to TCP
- Leave Forwarding Method set to Direct Routing
- Click Update
- Now click [Modify] next to the newly created VIP
- Set Balance mode to Weighted Round Robin

NOTE: Microsoft recommends that 'Round Robin' rather than 'Least Connection' should be used to help prevent over loading servers when they are brought online. This could occur if Least Connection was selected, since the load balancer would try to balance the number of connections across all real servers and therefore send all new requests to the new server. The trade off here is that using Round Robin will mean that server load may remain unbalanced for some time after bringing a new server into the active pool.

- Un-check the Persistence option
- Set Check Type to Negotiate
- Set Protocol to HTTPS
b) Setting up the Real Servers

- Using the WUI, go to Cluster Configuration > Layer 4 – Real Servers and click [Add a new Real Server] next to the newly created VIP.
- Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>192.168.30.20</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
<tr>
<td>Minimum Connections</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

- Enter an appropriate label for the RIP, e.g. CAS1.
- Change the Real Server IP Address field to the required IP address, e.g. 192.168.30.20.
- Click Update.
- Repeat the above steps to add your other CAS Server(s).
Configure VIP2 – CAS Role IMAP4 / POP3 Services

a) Setting up the Virtual Service

N.B. these steps show IMAP4 settings, for POP3 change the port numbers from 143 & 993 to 110 & 995

- Using the WUI, go to Cluster Configuration > Layer 4 – Virtual Service and click [Add a New Virtual Service]
- Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS-IMAP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Service</td>
<td>192.168.30.10</td>
</tr>
<tr>
<td>IP Address</td>
<td>143.993</td>
</tr>
<tr>
<td>Ports</td>
<td>TCP</td>
</tr>
</tbody>
</table>

- Enter an appropriate label for the VIP, e.g. CAS-IMAP4
- Set the Virtual Service IP address field to the required IP address, e.g. 192.168.30.10
- Set the Virtual Service Ports field to 143,993
- Leave Protocol set to TCP
- Leave Forwarding Method set to Direct Routing
- Click Update
- Now click [Modify] next to the newly created VIP
- Set Balance mode to Weighted Round Robin

NOTE: Microsoft recommends that 'Round Robin' rather than 'Least Connection' should be used to help prevent over loading servers when they are brought online. This could occur if Least Connection was selected, since the load balancer would try to balance the number of connections across all real servers and therefore send all new requests to the new server. The trade off here is that using Round Robin will mean that server load may remain unbalanced for some time after bringing a new server into the active pool.

- Un-check the Persistence option
- Click Update
b) Setting up the Real Servers

- Using the WUI, go to *Cluster Configuration > Layer 4 – Real Servers* and click *[Add a new Real Server]* next to the newly created VIP.
- Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>192.168.30.20</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
<tr>
<td>Minimum Connections</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

- Enter an appropriate label for the RIP, e.g. **CAS1**
- Change the *Real Server IP Address* field to the required IP address, e.g. **192.168.30.20**
- Click **Update**
- Repeat the above steps to add your other CAS Server(s)
Configure VIP3 – CAS Role SMTP Services

a) Setting up the Virtual Service

- Using the WUI, go to Cluster Configuration > Layer 4 – Virtual Service and click [Add a New Virtual Service]
- Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS-SMTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Service IP Address</td>
<td>192.168.30.10</td>
</tr>
<tr>
<td>Ports</td>
<td>25</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP</td>
</tr>
<tr>
<td>Forwarding Method</td>
<td>Direct Routing</td>
</tr>
</tbody>
</table>

- Enter an appropriate label for the VIP, e.g. CAS-SMTP
- Set the Virtual Service IP address field to the required IP address, e.g. 192.168.30.10
- Set the Virtual Service Ports field to 25
- Leave Protocol set to TCP
- Leave Forwarding Method set to Direct Routing
- Click Update
- Now click [Modify] next to the newly created VIP
- Un-check the Persistence option
- Click Update
b) Setting up the Real Servers

- Using the WUI, go to Cluster Configuration > Layer 4 – Real Servers and click [Add a new Real Server] next to the newly created VIP
- Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>192.168.30.20</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
<tr>
<td>Minimum Connections</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

- Enter an appropriate label for the RIP, e.g. CAS1
- Change the Real Server IP Address field to the required IP address, e.g. 192.168.30.20
- Click Update
- Repeat the above steps to add your other CAS Server(s)

Configure HTTP to HTTPS OWA Redirect

If required, the load balancer can be configured to automatically redirect users who attempt to connect to http://<URL to access OWA> to https://<URL to access OWA>. For details on configuring this, please refer to section 4 in the Appendix.
Appliance Configuring for Exchange 2013 – Using NAT Mode

NOTE: It's highly recommended that you have a working Exchange 2013 environment first before implementing the load balancer.

Configure VIP1 – CAS Role HTTPS Services

a) Setting up the Virtual Service

- Using the WUI, go to *Cluster Configuration > Layer 4 – Virtual Service* and click [Add a New Virtual Service]
- Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS-HTTPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Service IP Address</td>
<td>192.168.30.10</td>
</tr>
<tr>
<td>Ports</td>
<td>443</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP</td>
</tr>
<tr>
<td>Forwarding Method</td>
<td>NAT</td>
</tr>
</tbody>
</table>

- Enter an appropriate label for the VIP, e.g. **CAS-HTTPS**
- Set the *Virtual Service IP address* field to the required IP address, e.g. **192.168.30.10**
- Set the *Virtual Service Ports* field to **443**
- Leave *Protocol* set to **TCP**
- Set the *Forwarding Method* to **NAT**
- Click **Update**
- Now click **[Modify]** next to the newly created VIP
- Set *Balance mode* to **Weighted Round Robin**

NOTE: Microsoft recommends that 'Round Robin' rather than 'Least Connection' should be used to help prevent over loading servers when they are brought online. This could occur if Least Connection was selected, since the load balancer would try to balance the number of connections across all real servers and therefore send all new requests to the new server. The trade off here is that using Round Robin will mean that server load may remain unbalanced for some time after bringing a new server into the active pool.

- Un-check the *Persistence* option
- Set *Check Type* to **Negotiate**
- Set *Protocol* to **HTTPS**
• Set Request to send to iisstart.htm
• Set Response expected to microsoft
• Click Update

b) Setting up the Real Servers

• Using the WUI, go to Cluster Configuration > Layer 4 – Real Servers and click [Add a new Real Server] next to the newly created VIP
• Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>192.168.30.20</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>443</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
<tr>
<td>Minimum Connections</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

• Enter an appropriate label for the RIP, e.g. CAS1
• Set the Real Server IP Address field to the required IP address, e.g. 192.168.30.20
• Set the Real Server Port field to 443
• Click Update
• Repeat the above steps to add your other CAS Server(s)
Configure VIP2 – CAS Role IMAP4 / POP3 Services

a) Setting up the Virtual Service

N.B. these steps show IMAP4 settings, for POP3 change the port numbers from 143 & 993 to 110 & 995

- Using the WUI, go to Cluster Configuration > Layer 4 – Virtual Service and click [Add a New Virtual Service]
- Enter the following details:

 - Enter an appropriate label for the VIP, e.g. **CAS-IMAP4**
 - Set the Virtual Service IP address field to the required IP address, e.g. **192.168.30.10**
 - Set the Virtual Service Ports field to **143,993**
 - Leave Protocol set to **TCP**
 - set Forwarding Method to **NAT**
 - Click Update
 - Now click [Modify] next to the newly created VIP
 - Set Balance mode to **Weighted Round Robin**

NOTE: Microsoft recommends that 'Round Robin' rather than 'Least Connection' should be used to help prevent over loading servers when they are brought online. This could occur if Least Connection was selected, since the load balancer would try to balance the number of connections across all real servers and therefore send all new requests to the new server. The trade off here is that using Round Robin will mean that server load may remain unbalanced for some time after bringing a new server into the active pool.

- Un-check the Persistence option
- Click Update
b) Setting up the Real Servers

- Using the WUI, go to *Cluster Configuration > Layer 4 -- Real Servers* and click *[Add a new Real Server]* next to the newly created VIP
- Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>192.168.30.20</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>blank</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
<tr>
<td>Minimum Connections</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

- Enter an appropriate label for the RIP, e.g. **CAS1**
- Change the *Real Server IP Address* field to the required IP address, e.g. **192.168.30.20**
- Leave the *Real Server Port* field blank
- Click **Update**
- Repeat the above steps to add your other CAS Server(s)
Configure VIP3 – CAS Role SMTP Services

a) Setting up the Virtual Service

- Using the WUI, go to Cluster Configuration > Layer 4 – Virtual Service and click [Add a New Virtual Service]
- Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS-SMTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Service IP Address</td>
<td>192.168.30.10</td>
</tr>
<tr>
<td>Ports</td>
<td>25</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP</td>
</tr>
<tr>
<td>Forwarding Method</td>
<td>NAT</td>
</tr>
</tbody>
</table>

- Enter an appropriate label for the VIP, e.g. **CAS-SMTP**
- Set the Virtual Service IP address field to the required IP address, e.g. **192.168.30.10**
- Set the Virtual Service Ports field to **25**
- Leave Protocol set to **TCP**
- Set Forwarding Method to **NAT**
- Click **Update**
- Now click [Modify] next to the newly created VIP
- Un-check the Persistence option
- Click **Update**
b) Setting up the Real Servers

- Using the WUI, go to Cluster Configuration > Layer 4 – Real Servers and click [Add a new Real Server] next to the newly created VIP
- Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>192.168.30.20</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>25</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
<tr>
<td>Minimum Connections</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

- Enter an appropriate label for the RIP, e.g. CAS1
- Change the Real Server IP Address field to the required IP address, e.g. 192.168.30.20
- Change the Real Server Port field to 25
- Click Update
- Repeat the above steps to add your other CAS Server(s)

Configure HTTP to HTTPS OWA Redirect

If required, the load balancer can be configured to automatically redirect users who attempt to connect to http://<URL to access OWA> to https://<URL to access OWA>. For details on configuring this, please refer to section 4 in the Appendix.
NOTE: It's highly recommended that you have a working Exchange 2013 environment first before implementing the load balancer.

Configure Layer 7 Global Settings
To ensure that client connections remain open during periods of inactivity, the Client and Real Server Timeout values must be changed from their default values of 43 seconds and 45 seconds respectively to 5 minutes. To do this follow the steps below:

- Go to Cluster Configuration > Layer 7 – Advanced Configuration

<table>
<thead>
<tr>
<th>Lock HAProxy Configuration</th>
<th>Logging</th>
<th>Log Only Errors</th>
<th>Redispatch</th>
<th>Connection Timeout</th>
<th>Client Timeout</th>
<th>Real Server Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4000 ms</td>
<td>300000 ms</td>
<td>300000 ms</td>
</tr>
</tbody>
</table>

- Change Client Timeout to **300000** as shown above (i.e. 5 minutes)
- Change Real Server Timeout to **300000** as shown above (i.e. 5 minutes)
- Click the **Update** button to save the settings
Configure VIP1 – CAS Role HTTPS Services

a) Setting up the Virtual Service

- Using the WUI, go to Cluster Configuration > Layer 7 – Virtual Service and click [Add a New Virtual Service]
- Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS-HTTPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Service</td>
<td>192.168.30.10</td>
</tr>
<tr>
<td>Port</td>
<td>443</td>
</tr>
<tr>
<td>Layer 7 Protocol</td>
<td>TCP Mode</td>
</tr>
</tbody>
</table>

- Enter an appropriate label for the VIP, e.g. **CAS-HTTPS**
- Set the Virtual Service IP address field to the required IP address, e.g. **192.168.30.10**
- Set the Virtual Service Ports field to **443**
- Set Layer 7 Protocol set to **TCP Mode**
- Click **Update**
- Now click [Modify] next to the newly created VIP
- Set Balance mode to **Weighted Round Robin**

NOTE: Microsoft recommends that 'Round Robin' rather than 'Least Connection' should be used to help prevent over loading servers when they are brought online. This could occur if Least Connection was selected, since the load balancer would try to balance the number of connections across all real servers and therefore send all new requests to the new server. The trade off here is that using Round Robin will mean that server load may remain unbalanced for some time after bringing a new server into the active pool.

- Ensure Persistence Mode is set to **None**
- Click **Update**
b) Setting up the Real Servers

- Using the WUI, go to *Cluster Configuration > Layer 7 – Real Servers* and click [Add a new Real Server] next to the newly created VIP
- Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>192.168.30.20</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>443</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
</tbody>
</table>

- Enter an appropriate label for the RIP, e.g. **CAS1**
- Change the *Real Server IP Address* field to the required IP address, e.g. **192.168.30.20**
- Change the *Real Server Port* field to **443**
- Click **Update**
- Repeat the above steps to add your other CAS Server(s)
Configure VIP2 – CAS Role IMAP4 / POP3 Services

a) Setting up the Virtual Service

N.B. these steps show IMAP4 settings, for POP3 change the port numbers from 143 & 993 to 110 & 995

- Using the WUI, go to Cluster Configuration > Layer 7 – Virtual Service and click [Add a New Virtual Service]
- Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS-IMAP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Service IP Address</td>
<td>192.168.30.10</td>
</tr>
<tr>
<td>Ports</td>
<td>143,993</td>
</tr>
<tr>
<td>Layer 7 Protocol</td>
<td>TCP Mode</td>
</tr>
</tbody>
</table>

- Enter an appropriate label for the VIP, e.g. **CAS-IMAP4**
- Set the Virtual Service IP address field to the required IP address, e.g. **192.168.30.10**
- Set the Virtual Service Ports field to **143,993**
- Set Layer 7 Protocol to **TCP Mode**
- Click **Update**
- Now click [Modify] next to the newly created VIP
- Set Balance mode to **Weighted Round Robin**

NOTE: Microsoft recommends that ‘Round Robin’ rather than ‘Least Connection’ should be used to help prevent over loading servers when they are brought online. This could occur if Least Connection was selected, since the load balancer would try to balance the number of connections across all real servers and therefore send all new requests to the new server. The trade off here is that using Round Robin will mean that server load may remain unbalanced for some time after bringing a new server into the active pool.

- Ensure Persistence Mode is set to **None**
- Click **Update**
b) Setting up the Real Servers

- Using the WUI, go to *Cluster Configuration > Layer 7 – Real Servers* and click [Add a new Real Server] next to the newly created VIP
- Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>192.168.30.20</td>
</tr>
<tr>
<td>Real Server Port</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
</tbody>
</table>

- Enter an appropriate label for the RIP, e.g. **CAS1**
- Change the *Real Server IP Address* field to the required IP address, e.g. **192.168.30.20**
- Leave the *Real Server Port* field blank
- Click **Update**
- Repeat the above steps to add your other CAS Server(s)
Configure VIP3 – CAS Role SMTP Services

NOTE: Source IP Address Transparency

It's important to remember that when using SNAT mode (HAProxy), the source IP address of packets reaching the Exchange Servers will be the IP address of the load balancer and not the source IP address of the client.

If this is an issue, please refer to section 4 in the Appendix for details on using Tproxy. Tproxy enables the original source IP address to be maintained, but requires that separate subnets are used, and also requires that the load balancer becomes the default gateway for the Exchange Servers. Enabling Tproxy is a global setting and therefore affects all Virtual Services configured on the load balancer which may not always be desirable.

Transparency is normally only an issue for SMTP traffic at the receive connector. System Administrators typically want to lock down receive connectors to accept SMTP connections only from a controlled set of devices such as external smart mail hosts, printers, networked photocopiers etc.

If transparency for SMTP is the only issue, there are a couple of options available to address this:

Option 1 – Enable full layer 7 transparency using Tproxy. This is covered in section 1 of the Appendix.

Option 2 – Enable the load balancers on-board firewall to lock down inbound SMTP connections rather than doing this at the receive connector. This is covered in section 2 of the Appendix.

Option 3 – Configure a layer 4 Virtual Service for SMTP rather than a layer 7 (HAProxy) based Virtual Service. Layer 4 is transparent by default so the source IP address is maintained. This is covered in section 3 of the Appendix.

a) Setting up the Virtual Service

- Using the WUI, go to Cluster Configuration > Layer 7 – Virtual Service and click [Add a New Virtual Service]
- Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS-SMTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Service</td>
<td>IP Address</td>
</tr>
<tr>
<td>Ports</td>
<td>192.168.30.10</td>
</tr>
<tr>
<td>Port</td>
<td>25</td>
</tr>
<tr>
<td>Layer 7 Protocol</td>
<td>TCP Mode</td>
</tr>
</tbody>
</table>

 - Enter an appropriate label for the VIP, e.g. **CAS-SMTP**
 - Set the **Virtual Service IP address** field to the required IP address, e.g. **192.168.30.10**
 - Set the **Virtual Service Ports** field to **25**
 - Set **Layer 7 Protocol** to **TCP Mode**
Click Update
• Now click [Modify] next to the newly created VIP
• Ensure Persistence Mode is set to None
• Click Update

b) Setting up the Real Servers

• Using the WUI, go to Cluster Configuration > Layer 7 – Real Servers and click [Add a new Real Server] next to the newly created VIP
• Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>CAS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>192.168.30.20</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>25</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
</tbody>
</table>

• Enter an appropriate label for the RIP, e.g. CAS1
• Change the Real Server IP Address field to the required IP address, e.g. 192.168.30.20
• Change the Real Server Port field to 25
• Click Update
• Repeat the above steps to add your other CAS Server(s)

Configure HTTP to HTTPS OWA Redirect
If required, the load balancer can be configured to automatically redirect users who attempt to connect to http://<URL to access OWA> to https://<URL to access OWA>. For details on configuring this, please refer to section 4 in the Appendix.

Finalizing the Configuration
To apply the new settings, HAProxy must be restarted as follows:

• Go to Maintenance > Restart Services and click Restart HAProxy
Testing & Verification

Useful Exchange 2013 & Other Microsoft Tools

Testing Mailflow

The Test-Mailflow cmdlet can be used to diagnose whether mail can be successfully sent from and delivered to the system mailbox on a computer that has the Mailbox server role installed. You can also use this cmdlet to verify that e-mail is sent between Mailbox servers within a defined latency threshold.

The following screenshot shows an example of using this cmdlet:

![Screenshot of Test-Mailflow cmdlet output]

If everything is working correctly, a new message will appear in the test users mailbox:

![Example message output]

This is a Test-Mailflow probe message.
Testing SMTP using Telnet

SMTP can be tested using telnet to connect to port 25, then by issuing various commands to simulate an email being sent. Using System Overview in the WUI, each CAS server can be tested by 'Halting' all others then running through the tests.

e.g. telnet 192.168.111.240 25

The following screenshot shows an example of using telnet to verify SMTP operation:

If everything is working correctly, a new message will appear in the test users mailbox:

To do the same test via the load balancer, connect to the VIP, e.g. : telnet mail.robtest.com 25
Microsoft Testing Tool

The Exchange Remote Connectivity Analyzer tool, available at https://www.testexchangeconnectivity.com/ is a useful Web-based Microsoft tool designed to help IT Administrators troubleshoot connectivity issues with their Exchange Server deployments. The tool simulates several client logon and mail flow scenarios. When a test fails, many of the errors have troubleshooting tips to assist the IT Administrator in correcting the problem.

Useful Appliance based Tools & Features

Using System Overview

The System Overview is accessed using the WUI. It shows a graphical view of all VIPs & RIPs (i.e. the Exchange Servers) and shows the state/health of each server as well as the state of the each cluster as a whole. Th example below shows that both CAS servers are healthy and available to accept connections.

```
SYSTEM OVERVIEW

2013-06-18 13:30:16 UTC

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rip1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>192.168.111.240</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td>rip2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>192.168.111.241</td>
<td>443</td>
<td></td>
</tr>
</tbody>
</table>

Key: Cluster healthy  Cluster needs attention  Cluster is down  Real Server taken offline
```

The example below shows that rip2 has been put in halt mode:

```
SYSTEM OVERVIEW

2013-06-20 13:17:20 UTC

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rip1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>192.168.111.240</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td>rip2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>192.168.111.241</td>
<td>443</td>
<td></td>
</tr>
</tbody>
</table>

Key: Cluster healthy  Cluster needs attention  Cluster is down  Real Server taken offline
```
Layer 4 Status Report
The Layer 4 Status report gives a summary of layer 4 configuration and running stats as shown below. This can be accessed in the WUI using the option: Reports > Layer 4 Status.

Layer 4 Status

![Layer 4 Status](image)

Layer 7 Statistics Report
The Layer 7 Statistics report gives a summary of all layer 7 configuration and running stats as shown below. This can be accessed in the WUI using the option: Reports > Layer 7 Status.

HAProxy Statistics Report for pid 8727

![HAProxy Statistics](image)

Appliance Logs
Logs are available for both layer 4 and layer 7 services and can be very useful when trying to diagnose issues. Layer 4 logs are active by default and can be accessed using the WUI option: Logs > Layer 4. Layer 7 logging is not enabled by default (because it is extremely verbose) and can be enabled using the WUI option: Cluster Configuration > Layer 7 – Advanced Configuration, and then viewed using the option: Logs > Layer 7.
Technical Support
For more details or assistance with your deployment please don't hesitate to contact the support team at the following email address: support@loadbalancer.org

Conclusion
Loadbalancer.org appliances provide a very cost effective solution for highly available load balanced Exchange 2013 environments.
Appendix

1 – Enabling full Transparency using Tproxy (applies to Layer 7 SNAT mode)

As mentioned previously, Layer 7 SNAT mode is non-transparent by default. If a fully transparent configuration is required, Tproxy can be used. The main points to note are that two subnets must be used and the default gateway on the Exchange Servers must be set to be the load balancer.

Key points to consider:

- The Exchange Servers must be on a different subnet to the VIP – this can achieved by using 2 IP addresses assigned to a single interface, or two separate interfaces (eth0 & eth1)
- The default gateway on the Exchange Servers must be configured to be an IP address on the load balancer. For a clustered pair of load balancers, it's best to add an additional floating IP for this to allow failover to the slave
- Tproxy must be enabled using the WUI:
 Go to Cluster Configuration > Layer 7 – Advanced Configuration and set Transparent Proxy to 'On' and click Update

N.B. If the load balancer has been deployed in Layer 4 DR or NAT mode, both are transparent by default so no additional steps are required. This section only applies when using Layer 7 SNAT mode.
2 – Limiting inbound SMTP Connections using Firewall Rules (applies to Layer 7 SNAT mode)

Since layer 7 is not transparent by default, it's not possible to filter inbound SMTP connections by IP address at the receive connector on the Hub Transport Server. One way to address this is to add firewall rules to the load balancer to limit which hosts can connect inbound on port 25.

Rules can be added using the WUI option: Maintenance > Firewall Script. Simply copy/paste/edit the examples below into the firewall script then click Update.

EXAMPLES:

1) to limit inbound SMTP connections to a specific smart host:

VIP1="192.168.30.10"
SRC1="192.168.30.50"

iptables -A INPUT -p tcp --src $SRC1 --dst $VIP1 --destination-port 25 -j ACCEPT
iptables -A INPUT -p tcp --dport 25 -j DROP

These rules will only allow SMTP traffic from the host 192.168.30.50 to reach the 192.168.30.10 VIP.

2) to limit inbound SMTP connections to a range of smart hosts:

VIP1="192.168.30.10"
SRC1="192.168.30.50-60"

iptables -A INPUT -p tcp --src-range $SRC1 --dst $VIP1 --destination-port 25 -j ACCEPT
iptables -A INPUT -p tcp --dport 25 -j DROP

These rules will only allow SMTP traffic from hosts in the range 192.168.30.50 through 192.168.30.60 to reach the 192.168.30.10 VIP.

N.B. If the load balancer has been deployed in Layer 4 DR or NAT mode, both are transparent by default so no additional steps are required. This section only applies when using Layer 7 SNAT mode.
3 – Using a Layer 4 Virtual Service for SMTP

This guide uses Layer 7 HAProxy based Virtual Services for all load balanced services. Layer 7 Virtual Services are not transparent by default which can be an issue for SMTP. In these cases a Layer 4 VIP can be used instead for SMTP. There are two possibilities: DR (Direct Return) mode and NAT (Network Address Translation) mode. Layer 4 DR mode is covered on page 9 of this guide, Layer 4 NAT mode is covered on page 10.

N.B. If the load balancer has been deployed in Layer 4 DR or NAT mode, both are transparent by default so no additional steps are required. This section only applies when using Layer 7 SNAT mode.

4 – Configuring an HTTP to HTTPS redirect for OWA

An additional layer 7 VIP is required that listens on HTTP port 80 on the same IP address. The VIP is then configured to redirect connections to HTTPS port 443.

e.g. http://mail.robstest.com/owa should be redirected to https://mail.robstest.com/owa

The steps:

1) Create another Layer 7 VIP with the following settings:

 • Label: HTTP-redirect
 • Virtual Service IP Address: <same as the VIP that's listening on port 443>
 • Virtual Service Ports: 80
 • Layer 7 Protocol: HTTP Mode
 • Persistence Mode: None
 • Force to HTTPS: Yes

N.B. This VIP will show in red in the System overview since no real servers are defined

2) Apply the new settings– to apply the new settings, HAProxy must be restarted:

 • Using the WUI, go to: Maintenance > Restart Services and click Restart HAProxy

5 – Clustered Pair Configuration – Adding a Slave Unit

If you initially configured just the master unit and now need to add a slave, please refer the section ‘Adding a slave unit after the master has been configured’ in the administration manual which is available at the following link: http://www.loadbalancer.org/pdf/loadbalancerradministrationv7.pdf.

Please don't hesitate to contact our support team if you need further assistance: support@loadbalancer.org
Website

<table>
<thead>
<tr>
<th>Location</th>
<th>Contact Information</th>
</tr>
</thead>
</table>
| North America (US) | Loadbalancer.org, Inc.
270 Presidential Drive
Wilmington,
DE 19807
USA
Tel : +1 888.867.9504 (24x7)
Fax : +1 302.213.0122
Email (sales) : sales@loadbalancer.org
Email (support) : support@loadbalancer.org |
| North America (Canada) | Loadbalancer.org Ltd.
300-422 Richards Street
Vancouver, BC
V6B 2Z4
Canada
Tel : +1 855.681.6017 (24x7)
Fax : +1 302.213.0122
Email (sales) : sales@loadbalancer.org
Email (support) : support@loadbalancer.org |
| Europe (UK) | Loadbalancer.org Ltd.
Portsmouth Technopole
Kingston Crescent
Portsmouth
PO2 8FA
England, UK
Tel : +44 (0)330 3801064 (24x7)
Fax : +44 (0)870 4327672
Email (sales) : sales@loadbalancer.org
Email (support) : support@loadbalancer.org |
| Europe (Germany) | Loadbalancer.org GmbH
Alt Pempelfort 2
40211 Düsseldorf
Germany
Tel : +49 (0)30 920 383 6494
Fax : +49 (0)30 920 383 6495
Email (sales) : vertrieb@loadbalancer.org
Email (support) : support@loadbalancer.org |