Table of Contents

1. About this Guide ... 3
2. Loadbalancer.org Appliances Supported .. 3
3. Software Versions Supported .. 3
 3.1. Loadbalancer.org Appliance .. 3
 3.2. Netsweeper ... 3
4. Netsweeper ... 3
5. Netsweeper Deployment Modes .. 3
6. Deployment Concept ... 4
7. Configuring Netsweeper for Load Balancing 5
 7.1. Firewall Configuration .. 5
 7.2. DR Mode Considerations .. 5
 The ARP problem ... 5
 Solving the ARP Problem .. 5
8. Loadbalancer.org Appliance – the Basics 6
 8.1. Virtual Appliance .. 6
 8.2. Initial Network Configuration ... 6
 8.3. Accessing the WebUI ... 6
 Main Menu Options .. 8
 8.4. Appliance Software Update .. 9
 Determining the Current Software Version 9
 Checking for Updates using Online Update 9
 Using Offline Update .. 9
 8.5. Ports Used by the Appliance .. 10
 8.6. HA Clustered Pair Configuration .. 11
9. Option 1 – Explicit Mode ... 11
 9.1. Netsweeper Network Alias Configuration 11
 9.2. Loadbalancer Appliance Configuration 12
 Configuring the Virtual Service (VIP) .. 12
 Defining the Real Servers (RIPs) ... 12
 9.3. Client Browser Configuration .. 13
10. Option 2 – Transparent Mode ... 14
 10.1. Netsweeper Network Alias Configuration 14
 10.2. Loadbalancer Appliance Configuration 14
 Configuring the Virtual Service (VIP) .. 15
 Defining the Real Servers (RIPs) ... 15
 Firewall Script Configuration .. 16
 10.3. Additional Netsweeper Configuration 16
11. Option 3 – Non-Transparent Mode .. 17
 11.1. Client Browser Configuration .. 18
12. Testing & Verification .. 18
 12.1. Using System Overview ... 18
13. Technical Support ... 19
14. Further Documentation .. 19
15. Appendix .. 20
 15.1. Configuring HA - Adding a Secondary Appliance 20
 Non-Replicated Settings .. 20
 Adding a Secondary Appliance - Create an HA Clustered Pair ... 20
16. Document Revision History .. 23
1. About this Guide

This guide details the steps required to configure a load balanced Netsweeper environment utilizing Loadbalancer.org appliances. It covers the configuration of the load balancers and also any Netsweeper configuration changes that are required to enable load balancing.

For more information about initial appliance deployment, network configuration and using the Web User Interface (WebUI), please also refer to the Administration Manual.

2. Loadbalancer.org Appliances Supported

All our products can be used with Netsweeper. For full specifications of available models please refer to https://www.loadbalancer.org/products.

Some features may not be supported in all cloud platforms due to platform specific limitations, please check with Loadbalancer.org support for further details.

3. Software Versions Supported

3.1. Loadbalancer.org Appliance

- V8.6.1 and later

 Note: The screenshots used throughout this document aim to track the latest Loadbalancer.org software version. If using an older software version, note that the screenshots presented here may not match the WebUI exactly.

3.2. Netsweeper

- All versions

4. Netsweeper

Netsweeper is a Linux-based web filtering software developed by the Netsweeper corporation. It provides functions for filtering malicious and inappropriate web content, which can help with meeting compliance and regulatory requirements.

The Netsweeper software comes as both a virtual and hardware product, both of which can be effectively load balanced using Loadbalancer.org appliances. Load balancing a Netsweeper installation makes it highly available to avoid service interruption, easily scalable to meet changing levels of service demand, and simple to maintain by allowing Netsweepers to be gracefully removed from service ahead of disruptive maintenance tasks like reboots.

5. Netsweeper Deployment Modes

Three modes of Netsweeper operation are officially supported with Loadbalancer.org appliances:
6. Deployment Concept

- **Explicit Mode**: Proxy settings are explicitly set on each client device. Browser settings on client PCs must be changed to point to the virtual service (VIP) on the load balancer. *(Explicit Mode setup instructions.)*

- **Transparent Mode**: Policy based routing (PBR) is used at the router/firewall that handles client traffic. These rules at the router/firewall ensure that the required traffic (typically HTTP & HTTPS traffic on ports 80 and 443) is sent transparently to the load balancer. *(Transparent Mode setup instructions.)*

- **Non-Transparent Mode**: Proxy settings are explicitly set on each client device. Browser settings on client PCs must be changed to point at the virtual service (VIP) on the load balancer. *(Non-Transparent Mode setup instructions.)*

For a Netsweeper deployment, the load balancer is deployed using **Layer 4 DR Mode** (direct routing, aka DSR / direct server return). This is a very high performance solution which is well suited to web filters and proxies.

Note

The load balancer can be deployed as a single unit, although Loadbalancer.org recommends a clustered pair for resilience & high availability. Please refer to the section Configuring HA - Adding a Secondary Appliance in the appendix for more details on configuring a clustered pair.
7. Configuring Netsweeper for Load Balancing

The following instructions apply to all options/modes of operation for load balancing Netsweeper, and must be carried out on every deployment.

7.1. Firewall Configuration

Netsweeper uses several different network ports to function. Any firewalls that handle Netsweeper traffic should have the following network port rules configured so that Netsweeper works correctly:

- Open inbound ports: 80, 8080, 8081, 3431, 3432
- Open outbound ports: 25, 53, 80, 443, 3436

7.2. DR Mode Considerations

The ARP problem

DR mode works by changing the MAC addresses of inbound packets to match the Netsweeper server selected by the load balancing algorithm. To enable DR mode to operate:

- Each Netsweeper server must be configured to accept packets destined for both the VIP address and the Netsweeper server’s IP address (RIP). This is because in DR mode the destination address of load balanced packets is the VIP address, while for all other traffic, such as health checks, administration traffic, etc., the destination address is the Netsweeper server’s own IP address (the RIP). The Netsweeper service must also respond to both addresses.
- Each Netsweeper server must be configured so that it does not respond to ARP requests for the VIP address: only the load balancer should do this.

Configuring the Netsweeper servers in this way is referred to as "Solving the ARP problem". The steps presented below detail the Netsweeper-recommended solution to the ARP problem.

Solving the ARP Problem

iptables can be used on each Netsweeper server to identify incoming packets that are addressed to a virtual IP address (VIP) and redirect those packets to the server itself. This is achieved using the REDIRECT target in iptables, which performs the necessary NAT to make this possible. This allows a Netsweeper to accept packets addressed to a VIP without the Netsweeper owning the VIP.

Execute the following command to put the necessary iptables rule in place to redirect traffic for a single IPv4 VIP address. Note that iptables rules added in this way will not persist across reboots. To make such a rule permanent, either add the rule to an iptables firewall script, if one is provided with the Linux distribution in question, or add the command to an appropriate startup script such as /etc/rc.local on each Netsweeper.

```
iptables -t nat -A PREROUTING -d <IPv4-VIP> -j REDIRECT
```

The VIP address should be changed to match the virtual service in question, for example:
iptables -t nat -A PREROUTING -d 10.0.0.21 -j REDIRECT

The example above will redirect any incoming packets destined for 10.0.0.21 (the virtual service) locally, i.e. to the primary address of the incoming interface on the Netsweeper.

If a real server is responsible for serving *multiple* VIPs then additional iptables rules should be added to cover each VIP.

8. Loadbalancer.org Appliance – the Basics

8.1. Virtual Appliance

A fully featured, fully supported 30 day trial is available if you are conducting a PoC (Proof of Concept) deployment. The VA is currently available for VMware, Virtual Box, Hyper-V, KVM, XEN and Nutanix AHV and has been optimized for each Hypervisor. By default, the VA is allocated 2 vCPUs, 4GB of RAM and has a 20GB virtual disk. The Virtual Appliance can be downloaded [here](#).

| Note | The same download is used for the licensed product, the only difference is that a license key file (supplied by our sales team when the product is purchased) must be applied using the appliance’s WebUI. |

| Note | Please refer to Virtual Appliance Installation and the ReadMe.txt text file included in the VA download for additional information on deploying the VA using the various Hypervisors. |

| Note | The VA has 4 network adapters. For VMware only the first adapter (eth0) is connected by default. For HyperV, KVM, XEN and Nutanix AHV all adapters are disconnected by default. Use the network configuration screen within the Hypervisor to connect the required adapters. |

8.2. Initial Network Configuration

After boot up, follow the instructions on the appliance console to configure the management IP address, subnet mask, default gateway, DNS Server and other network settings.

| Important | Be sure to set a secure password for the load balancer, when prompted during the setup routine. |

8.3. Accessing the WebUI

The WebUI is accessed using a web browser. By default, users are authenticated using Apache authentication. Users can also be authenticated against LDAP, LDAPS, Active Directory or Radius - for more information, please refer to External Authentication.

| Note | There are certain differences when accessing the WebUI for the cloud appliances. For details, please refer to the relevant Quick Start / Configuration Guide. |
A number of compatibility issues have been found with various versions of Microsoft Internet Explorer and Edge. The WebUI has been tested and verified using both Chrome & Firefox.

1. Using a browser, navigate to the following URL:

 You’ll receive a warning about the WebUI’s certificate. This is due to the default self signed certificate that is used. If preferred, you can upload your own certificate - for more information, please refer to Appliance Security Features.

2. Log in to the WebUI using the following credentials:

 Username: loadbalancer
 Password: <configured-during-network-setup-wizard>

 To change the password, use the WebUI menu option: **Maintenance > Passwords**.

 Once logged in, the WebUI will be displayed as shown below:
3. You’ll be asked if you want to run the Setup Wizard. Click **Dismiss** if you’re following a guide or want to configure the appliance manually. Click **Accept** to start the Setup Wizard.

Note
The Setup Wizard can only be used to configure Layer 7 services.

Main Menu Options
- **System Overview** - Displays a graphical summary of all VIPs, RIPs and key appliance statistics
- **Local Configuration** - Configure local host settings such as IP address, DNS, system time etc.
- **Cluster Configuration** - Configure load balanced services such as VIPs & RIPs
- **Maintenance** - Perform maintenance tasks such as service restarts and taking backups
- **View Configuration** - Display the saved appliance configuration settings
- **Reports** - View various appliance reports & graphs
- **Logs** - View various appliance logs
- **Support** - Create a support download, contact the support team & access useful links

© Copyright Loadbalancer.org • Documentation • Load Balancing Netsweeper
8.4. Appliance Software Update

To ensure that the appliance(s) are running the latest software version, we recommend a software update check is performed.

Determining the Current Software Version

The software version is displayed at the bottom of the WebUI as shown in the example below:

Checking for Updates using Online Update

1. Using the WebUI, navigate to: Maintenance > Software Update.
2. Select Online Update.
3. If the latest version is already installed, a message similar to the following will be displayed:

 Information: Version v8.9.0 is the current release. No updates are available

4. If an update is available, you’ll be presented with a list of new features, improvements, bug fixes and security related updates.
5. Click Online Update to start the update process.

 Note: Do not navigate away whilst the update is ongoing, this may cause the update to fail.

6. Once complete (the update can take several minutes depending on download speed and upgrade version) the following message will be displayed:

 Information: Update completed successfully.

7. If services need to be reloaded/restarted or the appliance needs a full restart, you’ll be prompted accordingly.

Using Offline Update

If the load balancer does not have access to the Internet, offline update can be used.
To perform an offline update:

1. Using the WebUI, navigate to: Maintenance > Software Update.
2. Select Offline Update.
3. The following screen will be displayed:

4. Select the Archive and Checksum files.
5. Click Upload and Install.
6. If services need to be reloaded/restarted or the appliance needs a full restart, you’ll be prompted accordingly.

8.5. Ports Used by the Appliance

By default, the appliance uses the following TCP & UDP ports:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Port</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>22</td>
<td>SSH</td>
</tr>
<tr>
<td>TCP & UDP</td>
<td>53</td>
<td>DNS</td>
</tr>
<tr>
<td>TCP & UDP</td>
<td>123</td>
<td>NTP</td>
</tr>
<tr>
<td>TCP & UDP</td>
<td>161</td>
<td>SNMP</td>
</tr>
<tr>
<td>UDP</td>
<td>6694</td>
<td>Heartbeat between Primary & Secondary appliances in HA mode</td>
</tr>
<tr>
<td>TCP</td>
<td>7778</td>
<td>HAPProxy persistence table replication</td>
</tr>
<tr>
<td>TCP</td>
<td>9080</td>
<td>WebUI - HTTP (disabled by default)</td>
</tr>
<tr>
<td>TCP</td>
<td>9081</td>
<td>Nginx fallback page</td>
</tr>
<tr>
<td>TCP</td>
<td>9443</td>
<td>WebUI - HTTPS</td>
</tr>
</tbody>
</table>
8.6. HA Clustered Pair Configuration

Loadbalancer.org recommend that load balancer appliances are deployed in pairs for high availability. In this guide a single unit is deployed first, adding a secondary unit is covered in the section Configuring HA - Adding a Secondary Appliance of the appendix.

9. Option 1 – Explicit Mode

9.1. Netsweeper Network Alias Configuration

The following steps should be carried out on the Netsweeper software instances to configure them for load balancing using layer 4 DR mode.

These instructions will create a network alias for the eth0 network interface so that it can be assigned an additional IP address. This is required for layer 4 DR mode operation.

1. Establish an SSH session with the Netsweeper software.
2. Login to the admin account using the appropriate credentials.
3. Change to the network-scripts directory by executing the following command:
   ```bash
cd /etc/sysconfig/network-scripts
   ```
4. Execute the following command to create the configuration file for the eth0 network interface alias:
   ```bash
cp ifcfg-eth0 ifcfg-eth0:0
   ```
5. Open the newly-created configuration file for editing, by executing the command:
   ```bash
   nano ifcfg-eth0:0
   ```
6. Edit the following lines in the configuration file to make it read like so:
   ```bash
   DEVICE=eth0:0
   ONBOOT=YES
   BOOTPROTO=static
   IPADDR=<Insert Virtual IP Address>
   NETMASK=<Insert Subnet Mask For Network>
   GATEWAY=<Insert Default Gateway Address>
   NAME=Ethernet
   ```
7. Press Control+X to prompt to exit the text editor, then press Y and hit the Enter key to save the changes.
8. Bring up the newly added eth0 network interface alias by executing the command:
   ```bash
   service network restart
   ```
9.2. Loadbalancer Appliance Configuration

Configuring the Virtual Service (VIP)

1. Using the web user interface, navigate to Cluster Configuration > Layer 4 – Virtual Services and click on Add a new Virtual Service.

2. Define the Label for the virtual service as required, e.g. Netsweeper VIP.

3. Set the Virtual Service IP Address field to the required IP address, e.g. 192.168.85.140.

4. Set the Ports field to 31280.

5. Set the Protocol to TCP.

6. Set the Forwarding Method to Direct Routing.

7. Click Update to create the virtual service.

Defining the Real Servers (RIPs)

1. Using the web user interface, navigate to Cluster Configuration > Layer 4 – Real Servers and click on Add a new Real Server next to the newly created VIP.

2. Define the Label for the real server as required, e.g. Netsweeper 1.

3. Set the Real Server IP Address field to the required IP address, e.g. 192.168.85.200.

4. Click Update.

5. Repeat these steps to add additional Netsweepers as real servers as required.
9.3. Client Browser Configuration

On every client machine, the web browsers’ proxy settings should be changed to use the VIP address of the new load balanced service on port 31280.

Presented below is an example in the Chrome browser using a VIP address of 192.168.81.38:

Once this is done, the proxy and filter setup can be tested on a client machine as follows:

1. Close all running instances of the web browser.
2. Re-open the web browser, which should now be using the explicit proxy settings.
3. Try to access a website which should be blocked by Netsweeper.

This can be verified by checking the Netsweeper logs, under *Netsweeper Web Appliance > Logs > Request Log*
Files. There should be a new log entry for the blocked web page used in the browser test.

10. Option 2 – Transparent Mode

10.1. Netsweeper Network Alias Configuration

The following steps should be carried out on Netsweeper software instances to configure them for load balancing using layer 4 DR mode.

These instructions will create a network alias for the loopback adaptor so that it can be assigned an additional IP address. This is required for layer 4 DR mode operation.

1. Establish an SSH session with the Netsweeper software.
2. Login to the admin account using the appropriate credentials.
3. Change to the network-scripts directory by executing the following command:

   ```
   cd /etc/sysconfig/network-scripts
   ```

4. Execute the following command to create the configuration file for the loopback adaptor alias:

   ```
   cp ifcfg-lo ifcfg-lo:0
   ```

5. Open the newly-created configuration file for editing, by executing the command:

   ```
   nano ifcfg-lo:0
   ```

6. Edit the following lines in the configuration file to make it read like so:

   ```
   DEVICE=lo:0
   ONBOOT=YES
   BOOTPROTO=static
   IPADDR=<Insert Virtual IP Address>
   NETMASK=255.255.255.255
   GATEWAY=<Insert Default Gateway Address>
   NAME=loopback
   ```

7. Press Control+X to prompt to exit the text editor, then press Y and hit the Enter key to save the changes.

8. Bring up the newly added loopback adaptor alias by executing the command:

   ```
   service network restart
   ```

10.2. Loadbalancer Appliance Configuration
Configuring the Virtual Service (VIP)

1. Using the web user interface, navigate to Cluster Configuration > Layer 4 – Virtual Services and click on Add a new Virtual Service.
2. Define the Label for the virtual service as required, e.g. Proxy.
3. Set the Protocol to Firewall Marks.
4. Set the Firewall Mark Identifier to 1.
5. Ignore the greyed-out Ports field as this is not used.
6. Set the Forwarding Method to Direct Routing.
7. Click Update to create the virtual service.

Defining the Real Servers (RIPs)

1. Using the web user interface, navigate to Cluster Configuration > Layer 4 – Real Servers and click on Add a new Real Server next to the newly created VIP.
2. Define the Label for the real server as required, e.g. Netsweeper 1.
3. Set the Real Server IP Address field to the required IP address, e.g. 192.168.85.200.
4. Click Update.
5. Repeat these steps to add additional Netsweepers as real servers as required.
Firewall Script Configuration

Making transparent mode work requires making changes to the load balancer’s firewall script. The following instructions should be followed to make the necessary changes.

1. Using the web user interface, navigate to Maintenance > Firewall Script.

2. Under the “Manual Firewall Marks” section, uncomment the following three lines and change the value of “VIP1” to the IP address that the virtual service should listen on:

```plaintext
VIP1="10.0.0.1"
iptables -t mangle -A PREROUTING -p tcp -d $VIP1 --dport 80 -j MARK --set-mark 1
iptables -t mangle -A PREROUTING -p tcp -d $VIP1 --dport 443 -j MARK --set-mark 1
```

3. Press the Update button to apply the changes.

10.3. Additional Netsweeper Configuration

Further configuration changes need to be made on the Netsweeper software.

The following steps should be followed to make the necessary changes.

1. Establish an SSH session with the Netsweeper software.

2. Login to the admin account using the appropriate credentials.

3. Change to the netsweeper/etc directory by executing the following command:

```plaintext
cd /usr/local/netsweeper/etc
```
4. Open the Netsweeper port mapping configuration file for editing, by executing the command:

```bash
nano nsportmap.conf
```

5. Add the following two lines of text so that the file looks like so:

```
-GN
nano 2.8.9       file: nsportmap.conf
meat
-A PREROUTING -p tcp -m tcp --dport 80 -j REDIRECT --to-ports 31281
-A PREROUTING -p tcp -m tcp --dport 443 -j REDIRECT --to-ports 31282
COMMIT
```

6. Press `Control+X` to prompt to exit the text editor, then press `Y` and hit the `Enter` key to save the changes.

7. Open the Netsweeper proxy configuration file for editing, by executing the command:

```bash
nano nsproxy.conf
```

8. Locate the section above **Access control settings** and add the following lines:

```
listen proxy 0.0.0.0 31280
listen http 0.0.0.0 31281
listen https 0.0.0.0 31282
listen denypage 0.0.0.0 9443 localhost 443
```

9. Press `Control+X` to prompt to exit the text editor, then press `Y` and hit the `Enter` key to save the changes.

10. Restart the port mapping service by executing the command

```bash
service nsportmapctl restart
```

11. Restart the proxy service by executing the command

```bash
service nsproxyctl restart
```

12. **Start** the port mapping service by executing the command

```bash
service nsportmapctl start
```

After making these changes, the Netsweeper software should now work in a transparent mode-style deployment.

11. Option 3 – Non-Transparent Mode
11.1. Client Browser Configuration

For a non-transparent deployment, first follow through all of the instructions for Option 2 – Transparent Mode.

An additional step is needed to turn a transparent deployment into a non-transparent deployment. On every client machine, the web browsers’ proxy settings should be changed to use the VIP address of the new load balanced service on port 31280.

Presented below is an example in the Chrome browser using a VIP address of 192.168.81.38:

![Image of browser settings]

12. Testing & Verification

For additional guidance on diagnosing and resolving any issues you may have, please also refer to Diagnostics & Troubleshooting.

12.1. Using System Overview

The System Overview can be viewed in the WebUI. It shows a graphical view of all VIPs & RIPs (i.e. the Netsweepers) and shows the state/health of each server as well as the state of the cluster as a whole. The example below shows a transparent mode deployment where all three Netsweepers are healthy and available to accept connections:
13. Technical Support

For more details about configuring the appliance and assistance with designing your deployment please don’t hesitate to contact the support team using the following email address: support@loadbalancer.org.

14. Further Documentation

For additional information, please refer to the Administration Manual.
15. Appendix

15.1. Configuring HA - Adding a Secondary Appliance

Our recommended configuration is to use a clustered HA pair of load balancers to provide a highly available and resilient load balancing solution.

We recommend that the Primary appliance is configured first and then the Secondary should be added. Once the Primary and Secondary are paired, all load balanced services configured on the Primary are automatically replicated to the Secondary over the network using SSH/SCP.

The clustered HA pair uses Heartbeat to determine the state of the other appliance. Should the active device (normally the Primary) suffer a failure, the passive device (normally the Secondary) will take over.

Non-Replicated Settings

A number of settings are not replicated as part of the Primary/Secondary pairing process and therefore must be manually configured on the Secondary appliance. These are listed by WebUI menu option in the table below:

<table>
<thead>
<tr>
<th>WebUI Main Menu Option</th>
<th>Sub Menu Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Configuration</td>
<td>Hostname & DNS</td>
<td>Hostname and DNS settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Network Interface</td>
<td>All network settings including IP address(es), bonding configuration and VLANs</td>
</tr>
<tr>
<td></td>
<td>Configuration</td>
<td></td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Routing</td>
<td>Routing configuration including default gateways and static routes</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>System Date & time</td>
<td>All time and date related settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Physical – Advanced</td>
<td>Various settings including Internet Proxy, Management Gateway, Firewall</td>
</tr>
<tr>
<td></td>
<td>Configuration</td>
<td>connection tracking table size, NIC offloading, SMTP relay, logging and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Syslog Server</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Security</td>
<td>Appliance security settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>SNMP Configuration</td>
<td>Appliance SNMP settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Graphing</td>
<td>Appliance graphing settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>License Key</td>
<td>Appliance licensing</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Software Updates</td>
<td>Appliance software update management</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Script</td>
<td>Appliance firewall (iptables) configuration</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Lockdown Wizard</td>
<td>Appliance management lockdown settings</td>
</tr>
</tbody>
</table>

Important: Make sure that if these settings/updates have been configured on the Primary appliance, they're also configured on the Secondary appliance.

Adding a Secondary Appliance - Create an HA Clustered Pair
If you have already run the firewall lockdown wizard on either appliance, you’ll need to ensure that it is temporarily disabled on both appliances whilst performing the pairing process.

1. Deploy a second appliance that will be the Secondary and configure initial network settings.

2. Using the WebUI on the Primary appliance, navigate to: **Cluster Configuration > High-Availability Configuration**.

 ![Create a Clustered Pair](image)

 - **Local IP address**: 192.168.110.40
 - **IP address of new peer**: 192.168.110.41
 - **Password for loadbalancer user on peer**:

3. Specify the IP address and the *loadbalancer* user’s password for the Secondary (peer) appliance as shown in the example above.

4. Click **Add new node**.

5. The pairing process now commences as shown below:

 ![Create a Clustered Pair](image)

 - **Primary**: IP: 192.168.110.40
 - **Secondary**: IP: 192.168.110.41

6. Once complete, the following will be displayed on the Primary appliance:
7. To finalize the configuration, restart heartbeat and any other services as prompted in the "Commit changes" message box at the top of the screen.

Note
Clicking the **Restart Heartbeat** button on the Primary appliance will also automatically restart heartbeat on the Secondary appliance.

Note
For more details on configuring HA with 2 appliances, please refer to [Appliance Clustering for HA](#).

Note
For details on testing and verifying HA, please refer to [Clustered Pair Diagnostics](#).
16. Document Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Change</th>
<th>Reason for Change</th>
<th>Changed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0</td>
<td>3 March 2018</td>
<td>Initial version</td>
<td></td>
<td>AH</td>
</tr>
<tr>
<td>1.0.1</td>
<td>27 March 2018</td>
<td>Change of ‘ARP problem’ solution to use iptables method, based on feedback from Netsweeper</td>
<td>Required updates</td>
<td>AH</td>
</tr>
<tr>
<td>1.0.2</td>
<td>21 May 2018</td>
<td>Terminology change at the request of Netsweeper</td>
<td>Required updates</td>
<td>AH</td>
</tr>
<tr>
<td>1.0.3</td>
<td>6 December 2018</td>
<td>Added the new "Company Contact Information" page</td>
<td>Required updates</td>
<td>AH</td>
</tr>
<tr>
<td>1.1.0</td>
<td>9 December 2019</td>
<td>Styling and layout</td>
<td>General styling updates</td>
<td>AH</td>
</tr>
<tr>
<td>1.1.1</td>
<td>17 January 2020</td>
<td>Added note explaining how to disable “Secure Mode” to unlock the firewall script page</td>
<td>Required update</td>
<td>RJC</td>
</tr>
<tr>
<td>1.1.2</td>
<td>26 August 2020</td>
<td>New title page</td>
<td>Branding update</td>
<td>AH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Canadian contact details</td>
<td>Change to Canadian contact details</td>
<td></td>
</tr>
<tr>
<td>1.2.0</td>
<td>26 April 2023</td>
<td>Converted the document to AsciiDoc</td>
<td>Document updates required moving it to the new documentation system</td>
<td>AH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Significant updates to bring the document into line with current documentation format</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>New document theme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified diagram colours</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
About Loadbalancer.org

Loadbalancer.org’s mission is to ensure that its clients’ businesses are never interrupted. The load balancer experts ask the right questions to get to the heart of what matters, bringing a depth of understanding to each deployment. Experience enables Loadbalancer.org engineers to design less complex, unbreakable solutions - and to provide exceptional personalized support.