Load Balancing
Nuance Equitrac®

Deployment Guide
v1.1.0
Contents

1. About this Guide ... 3
2. Loadbalancer.org Appliances Supported ... 3
3. Loadbalancer.org Software Versions Supported .. 3
4. Nuance Equitrac Software Versions Supported .. 3
5. Nuance Equitrac ... 4
6. Load Balancing Nuance Equitrac .. 4
 - Introduction and Overview of Different Modes ... 4
 - Prerequisites .. 4
 - Overview of steps required ... 4
 - Configuring the virtual service (VIP) ... 5
 - Defining the Real Servers (RIPs) .. 6
 - Configuring the virtual service (VIP) ... 7
 - Defining the Real Servers (RIPs) .. 7
9. Configuring Print Servers for Load Balancing .. 9
 - Registry Modifications ... 9
 - Microsoft Windows Server 2008 Specific Registry Change 10
 - Configuring Name Resolution ... 10
 - DNS Name Resolution (Windows 2000 & later) ... 10
 - NetBIOS Name Resolution (legacy Environments) ... 11
 - Finalising the Server Configuration .. 11
 - Testing the load balanced print service .. 12
 - Installing and Configuring Couchbase and Equitrac DCE 12
10. Technical Support .. 12
11. Further Documentation .. 12
12. Conclusion ... 12
13. Appendix ... 13
 - 1 – Solving the ARP Problem ... 13
14. Document Revision History ... 18
1. About this Guide

This guide details the steps required to configure a load balanced Nuance Equitrac environment utilizing Loadbalancer.org appliances. It covers the configuration of the load balancers and also any Nuance Equitrac configuration changes that are required to enable load balancing.

For more information about initial appliance deployment, network configuration and using the Web User Interface (WebUI), please also refer to the relevant Administration Manual:

- v7 Administration Manual
- v8 Administration Manual

2. Loadbalancer.org Appliances Supported

All our products can be used for load balancing Nuance Equitrac. The complete list of models is shown below:

<table>
<thead>
<tr>
<th>Discontinued Models</th>
<th>Current Models *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise R16</td>
<td>Enterprise R20</td>
</tr>
<tr>
<td>Enterprise VA R16</td>
<td>Enterprise MAX</td>
</tr>
<tr>
<td>Enterprise VA</td>
<td>Enterprise 10G</td>
</tr>
<tr>
<td>Enterprise R320</td>
<td>Enterprise 40G</td>
</tr>
<tr>
<td></td>
<td>Enterprise Ultra</td>
</tr>
<tr>
<td></td>
<td>Enterprise VA R20</td>
</tr>
<tr>
<td></td>
<td>Enterprise VA MAX</td>
</tr>
<tr>
<td></td>
<td>Enterprise AWS **</td>
</tr>
<tr>
<td></td>
<td>Enterprise AZURE **</td>
</tr>
<tr>
<td></td>
<td>Enterprise GCP **</td>
</tr>
</tbody>
</table>

* For full specifications of these models please refer to: http://www.loadbalancer.org/products/hardware

** Some features may not be supported, please check with Loadbalancer.org support

3. Loadbalancer.org Software Versions Supported

- V7.6.4 and later

4. Nuance Equitrac Software Versions Supported

- Nuance Equitrac – all versions
5. Nuance Equitrac

Nuance Equitrac is a print management solution designed to simplify printer management.

Printing costs can be monitored, and can be reduced by forcing users to follow budget saving printing habits. Secure and regulations compliant printing is made possible by allowing users ‘pick up’ and print their secure documents in person at any printer. Flexible printing is achieved as users can print from anywhere, at anytime, and print from wherever they like.

6. Load Balancing Nuance Equitrac

Introduction and Overview of Different Modes

This guide details the configuration of a high availability DCE cluster for Equitrac Office and Express, using a Loadbalancer.org appliance.

For a Nuance Equitrac deployment, the preferred and default load balancer configuration uses Layer 4 DR Mode (Direct Routing, aka DSR / Direct Server Return). This is a very high performance solution that requires little change to your existing infrastructure. It is necessary to solve “the ARP problem” on the real print servers. This is a straightforward process, and is detailed in the section “Configuring Print Servers for Load Balancing”.

It is also possible to load balance a Nuance Equitrac deployment using Layer 7 SNAT Mode. This mode might be preferable if making changes to the real print servers is not possible, although some Windows Registry keys need to be added. Due to the increased amount of information at layer 7, performance is not as fast as at layer 4. Also note that load balanced connections at layer 7 are not source IP transparent, which is not usually an issue when load balancing print servers but should still be considered.

Prerequisites

A load balanced Nuance Equitrac environment requires the following:

- Microsoft Windows Server environment
- Installation of DCE server and Couchbase in High Availability setup*

*For installation instructions, please refer to the Nuance Equitrac Office and Express Print Release High Availability Setup Guide, which can be found here: https://download.equitrac.com/271828/E057/Docs/Print_Release_HA.pdf

Overview of steps required

Setting up a load balanced Nuance Equitrac environment can be summarised as follows:

- Create a virtual service (VIP) on the load balancer that listens on the required ports
- Associate the print servers to the virtual service, i.e. define them as ‘real servers’ (RIPs) for the VIP
- Install and configure the Nuance Equitrac DCE Windows print servers
- Configure registry settings on the print servers to enable them to be accessed via a shared name
- Configure name resolution related settings on the print servers
- Point users at the VIP to access the print server and the printer shares
7. Appliance Configuration for Nuance Equitrac – Using DR Mode

Note: The steps listed here are for a version 8.x Loadbalancer.org appliance, however the steps are similar for all versions.

Configuring the virtual service (VIP)
1. Using the web user interface, navigate to Cluster Configuration > Layer 4 – Virtual Services and click on Add a new Virtual Service.
2. Define the Label for the virtual service as required, e.g. EQDCEHA.
3. Set the Virtual Service IP Address field to the required IP address, e.g. 10.10.10.190.
4. Set the Ports as needed, depending on your MFP vendor:
 - For Lexmark and Ricoh, use port 2939.
 - For HP OXPd, use ports 2939 and 7627.
5. Click Update to create the virtual service.
6. Click Modify next to the newly created VIP.
7. Make sure that the Persistent checkbox is not selected.
8. Set the Check Port for server/service online to 2939.
9. Click Update.
Defining the Real Servers (RIPs)

1. Using the web user interface, navigate to Cluster Configuration > Layer 4 – Real Servers and click on Add a new Real Server next to the newly created VIP
2. Define the Label for the real server as required, e.g. DCE1
3. Set the Real Server IP Address field to the required IP address, e.g. 192.168.100.20
4. Click Update
5. Repeat these steps to add additional print servers as required
8. Appliance Configuration for Nuance Equitrac – Using SNAT Mode

Note: The steps listed here are for a version 8.x Loadbalancer.org appliance, however the steps are similar for all versions.

Configuring the virtual service (VIP)
1. Using the web user interface, navigate to Cluster Configuration > Layer 7 – Virtual Services and click on Add a new Virtual Service.
2. Define the Label for the virtual service as required, e.g. PrintService.
3. Set the Virtual Service IP Address field to the required IP address, e.g. 192.168.10.10.
4. Set the Ports to 445.
5. Set the Layer 7 Protocol to TCP Mode.
6. Click Update.

![Layer 7 - Add a new Virtual Service](image)

Defining the Real Servers (RIPs)
1. Using the web user interface, navigate to Cluster Configuration > Layer 7 – Real Servers and click on Add a new Real Server next to the newly created VIP.
2. Define the Label for the real server as required, e.g. DCE1.
3. Set the Real Server IP Address field to the required IP address, e.g. 192.168.10.20.
4. Leave the Real Server Port field blank.
5. Click Update.
6. Repeat these steps to add additional print servers as required.
7. Click on **Reload HAProxy** when prompted to do so in the blue box that appears. This will apply the new changes and put the new virtual service and its associated virtual servers into use.
9. Configuring Print Servers for Load Balancing

The following steps should be carried out on each print server defined in the virtual service:

1. Join the server to the same domain as the client PCs
2. Install the **Print and Document Service** role / **Print Server** service
3. Install and share the printers (use exactly the same share names and permissions across all servers)
4. If DR mode is used, solve the "ARP problem" on each print server, to that DR mode will work. For detailed steps on solving the ARP problem for the various versions of Windows, please refer to Appendix 1 on page 13 for more information.

Note: Important: When configuring the Loopback Adapter to solve the ARP Problem, the following options must also be checked (ticked):
- Client for Microsoft Networks
- File & Printer Sharing for Microsoft Networks

Registry Modifications

To enable the print servers to be accessed via a shared name (**EQDCEHA** in the example virtual service in this guide), add the following registry entries to each print server:

- **Key:** HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa
 - **Value:** DisableLoopbackCheck
 - **Type:** REG_DWORD
 - **Data:** 1

- **Key:** HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters
 - **Value:** DisableStrictNameChecking
 - **Type:** REG_DWORD
 - **Data:** 1

- **Key:** HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters
 - **Value:** OptionalNames
 - **Type:** REG_MULTI_SZ
 - **Data:** EQDCEHA

Note: In the example presented here, **EQDCEHA** is the name that will be used to access the load balanced print servers via the virtual service (VIP) created on the load balancer. This can be set to any appropriate
name. Whatever name is used, it must resolve to the IP address of the VIP as explained in the section below.

Microsoft Windows Server 2008 Specific Registry Change

If Microsoft Windows Server 2008 is used as the operating system for the printer servers, an additional registry entry change is required. The following registry entry should be changed from a DWORD to a QWORD:

Key: HKLM\SYSTEM\CurrentControlSet\Control\Print\DNSOneWire
Value: DnsOnWire
Type: REG_QWORD
Data: 1

Configuring Name Resolution

For printer load balancing to work, either DNS or NetBIOS name resolution should be configured as detailed below.

DNS Name Resolution (Windows 2000 & Later)

To configure DNS name resolution, the following steps should be completed:

1. NetBIOS over TCP/IP should be disabled on all interfaces of each print server, like shown

2. A host name and corresponding “Host (A)” record for the virtual DCE that matches the virtual IP (VIP) address for the load balancer should be created
When configuring printers to connect back to the highly available DCE, the DCE hostname / IP address should be the VIP address and not the individual DCE host name or IP address.

NetBIOS Name Resolution (legacy Environments)

To configure NetBIOS name resolution, the following steps should be completed:

1. NetBIOS over TCP/IP should be **disabled on the main NIC** and **left enabled on the Loopback adapter** on each print server.

2. Either a WINS server should be set up and all clients configured to use this, or **pre-loaded entries in the LMHosts file of each client should be set up**.

Note: As shown in the flow chart in [this TechNet article](#), for a default H-node client, NetBIOS name resolution occurs in the following order:

1. Local NetBIOS cache
2. WINS server
3. NetBIOS broadcast
4. Local LMHosts file

Therefore, to avoid broadcast, LMHost entries must be declared as pre-loaded to ensure they are available in the local NetBIOS cache.

Configuring the LMHosts file

This is done by creating an entry like so:

```
EQDCEHA 192.168.100.10 #PRE
```

Entries with the #PRE directive are loaded into the cache on reboot, or can be forced using the command:

```
nbtstat -R
```

The following command can be used to view the cache and verify that the entry has been added:

```
nbtstat -c
```

Finalising the Server Configuration

To finalise the print server configuration changes, **each print server must be rebooted**.
Testing the load balanced print service

The load balanced print service can be tested, either by browsing to the virtual service IP address or the share name. In the example presented in this document, this would be done by going to

\10.10.10.190

or

\IEQDCEHA

Any shared printers and shared folders that have been configured on the real print servers should be visible.

Installing and Configuring Couchbase and Equitrac DCE

The Couchbase and Equitrac DCE software should be set up by following the steps outlined in the document Nuance Equitrac Office and Express Print Release High Availability Setup Guide, which can be found here: https://download.equitrac.com/271828/EO5.7/Docs/Print_Release_HA.pdf

10. Technical Support

For more details about configuring the appliance and assistance with designing your deployment please don't hesitate to contact the support team using the following email address: support@loadbalancer.org

11. Further Documentation

12. Conclusion

Loadbalancer.org appliances provide a very cost effective solution for highly available load balanced Nuance Equitrac environments.
13. Appendix

1 – Solving the ARP Problem
When using Layer 4 DR mode, the ARP problem must be solved. This involves configuring each Real Server to be able to receive traffic destined for the VIP, and ensuring that each Real Server does not respond to ARP requests for the VIP address – only the load balancer should do this.

The steps below are for Windows 2012/2016, for other versions of Windows please refer to chapter 6 in the administration manual.

Step 1: Install the Microsoft Loopback Adapter
1. Click Start, then run hdwwiz to start the Hardware Installation Wizard
2. When the Wizard has started, click Next
3. Select Install the hardware that I manually select from a list (Advanced), click Next
4. Select Network adapters, click Next
5. Select Microsoft & Microsoft KM-Test Loopback Adapter, click Next

![Add Hardware](image)

6. Click Next to start the installation, when complete click Finish

Step 2: Configure the Loopback Adapter
1. Open Control Panel and click Network and Sharing Center
2. Click **Change adapter settings**

3. Right-click the new Loopback Adapter and select **Properties**

4. Un-check all items except **Internet Protocol Version 4 (TCP/IPv4)** and **Internet Protocol Version 6 (TCP/IPv6)** as shown below:

![Loopback Properties](image)

Note: Leaving both checked ensures that both IPv4 and IPv6 are supported. Select one if preferred. **Important**: When configuring the Loopback Adapter to solve the ARP Problem, the following options **must** also be checked (ticked):
- Client for Microsoft Networks
- File & Printer Sharing for Microsoft Networks

5. If configuring IPv4 addresses select **Internet Protocol Version (TCP/IPv4)**, click **Properties** and configure the IP address to be the same as the Virtual Service (VIP) with a subnet mask of 255.255.255.255, e.g., 192.168.2.20/255.255.255.255 as shown below:
6. If configuring IPv6 addresses select Internet Protocol Version (TCP/IPv6), click Properties and configure the IP address to be the same as the Virtual Service (VIP) and set the Subnet Prefix Length to be the same as your network setting, e.g. 2001:470:1f09:e72::15/64 as shown below:

7. Click OK on TCP/IP Properties, then click Close on Ethernet Properties to save and apply the new settings

8. Now repeat the above process on the other Windows 2012/2016 Real Servers
Step 3: Configure the strong/weak host behavior

Windows Server 2000 and Windows Server 2003 use the weak host model for sending and receiving for all IPv4 interfaces and the strong host model for sending and receiving for all IPv6 interfaces. You cannot configure this behavior. The Next Generation TCP/IP stack in Windows 2008 and later supports strong host sends and receives for both IPv4 and IPv6 by default. To ensure that Windows 2012/2016 is running in the correct mode to be able to respond to the VIP, the following commands must be run on each Real Server:

For IPv4 addresses:

```
netsh interface ipv4 set interface "net" weakhostreceive=enabled
netsh interface ipv4 set interface "loopback" weakhostreceive=enabled
netsh interface ipv4 set interface "loopback" weakhostsend=enabled
```

For IPv6 addresses:

```
netsh interface ipv6 set interface "net" weakhostreceive=enabled
netsh interface ipv6 set interface "loopback" weakhostreceive=enabled
netsh interface ipv6 set interface "loopback" weakhostsend=enabled
netsh interface ipv6 set interface "loopback" dadtransmits=0
```

For these commands to work, the LAN connection NIC must be named “net” and the loopback NIC must be named “loopback” as shown below. If you prefer to leave your current NIC names, then the commands above must be modified accordingly. For example, if your network adapters are named “LAN” and “LOOPBACK”, the commands required would be:

```
netsh interface ipv4 set interface "LAN" weakhostreceive=enabled
netsh interface ipv4 set interface "LOOPBACK" weakhostreceive=enabled
netsh interface ipv4 set interface "LOOPBACK" weakhostsend=enabled
```

```
netsh interface ipv6 set interface "LAN" weakhostreceive=enabled
netsh interface ipv6 set interface "LOOPBACK" weakhostreceive=enabled
netsh interface ipv6 set interface "LOOPBACK" weakhostsend=enabled
netsh interface ipv6 set interface "LOOPBACK" dadtransmits=0
```
Note: The names for the NICs are case sensitive, so make sure that the name used for the interface and the name used in the commands match exactly.

1. Start Powershell or use a command window to run the appropriate netsh commands as shown in the example below:

Note: This shows an IPv6 example, use the IPv4 commands if you're using IPv4 addresses.

2. Now repeat these 4 commands on the other Windows 2012/2016 Real Servers

Note: Solving the ARP problem for other version of Windows is similar. For full details, please refer to the [administration manual](#).
14. Document Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Change</th>
<th>Reason for Change</th>
<th>Changed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0</td>
<td>8 March 2018</td>
<td>Initial version</td>
<td></td>
<td>AH</td>
</tr>
<tr>
<td>1.0.1</td>
<td>6 December 2018</td>
<td>Added the new "Company Contact Information" page</td>
<td>Required updates</td>
<td>AH</td>
</tr>
<tr>
<td>1.1.0</td>
<td>9 December 2019</td>
<td>Styling and layout</td>
<td>General styling updates</td>
<td>AH</td>
</tr>
</tbody>
</table>
About Loadbalancer.org

Loadbalancer.org's mission is to ensure that its clients' businesses are never interrupted. The load balancer experts ask the right questions to get to the heart of what matters, bringing a depth of understanding to each deployment. Experience enables Loadbalancer.org engineers to design less complex, unbreakable solutions – and to provide exceptional personalized support.

United Kingdom
Loadbalancer.org Ltd.
Compass House, North Harbour Business Park, Portsmouth, PO6 4PS
UK: +44 (0) 330 380 1064
sales@loadbalancer.org
support@loadbalancer.org

United States
Loadbalancer.org, Inc.
4550 Linden Hill Road, Suite 201
Wilmington, DE 19808, USA
TEL: +1 833.274.2566
sales@loadbalancer.org
support@loadbalancer.org

Canada
Loadbalancer.org Appliances Ltd.
300-422 Richards Street, Vancouver,
BCV6B 2Z4, Canada
TEL: +1 302.213.0122
sales@loadbalancer.org
support@loadbalancer.org

Germany
Loadbalancer.org GmbH
Tengstraße 2780798,
München, Germany
TEL: +49 (0)89 2000 2179
sales@loadbalancer.org
support@loadbalancer.org