Contents

1. About this Guide .. 4
2. Loadbalancer.org Appliances Supported .. 4
3. Loadbalancer.org Software Versions Supported ... 4
4. Web Proxies/Filters/Gateways .. 4
5. Benefits of Implementing a Load Balancer ... 5
6. Load Balancer Configuration Options .. 5
 Deployment Modes .. 5
 Layer 4 (Recommended) .. 5
 Layer 7 ... 6
Persistence / Server Affinity ... 6
Source IP Address (Recommended) .. 6
Destination Hash .. 6
7. Web Proxy Deployment Modes .. 6
 1 – Explicit Proxy Mode (Recommended) .. 6
 2 – Transparent Routed Proxy Mode .. 6
8. Summary of Deployment Options ... 8
9. Loadbalancer.org Appliance – the Basics .. 8
 Virtual Appliance Download & Deployment ... 8
 Initial Network Configuration .. 9
 Accessing the Web User Interface (WebUI) .. 9
 HA Clustered Pair Configuration ... 10
10. Option 1 – Explicit Proxy Mode (Recommended) .. 11
 Option 1A – Using DR (Direct Return) Mode (Recommended) .. 11
 Deployment Architecture ... 11
 Load Balancer Configuration .. 12
 Web Proxy Appliance Configuration ... 13
 Finalize Settings .. 14
 Option 1B – Using NAT Mode .. 15
 Deployment Architecture ... 15
 Load Balancer Configuration .. 16
 Web Proxy Configuration ... 18
 Finalize Settings .. 19
 Option 1C – Using NAT Mode (Preferred NAT Topology) .. 20
 Deployment Architecture ... 20
 Load Balancer Configuration .. 21
 Web Proxy Configuration ... 23
 Finalize Settings .. 23
 Configuration Settings Common to Options 1A, 1B & 1C. .. 23
 Web Proxy Operating Mode .. 23
 Client Configuration .. 24
11. Option 2 – Transparent Routed Proxy Mode .. 26
 Deployment Architecture ... 26
 Load Balancer Configuration .. 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create the Virtual Service (VIP)</td>
<td>27</td>
</tr>
<tr>
<td>Add the Floating IP</td>
<td>28</td>
</tr>
<tr>
<td>Configure Firewall Rules</td>
<td>28</td>
</tr>
<tr>
<td>Define the Real Servers (RIPs)</td>
<td>29</td>
</tr>
<tr>
<td>Web Proxy Appliance Configuration</td>
<td>30</td>
</tr>
<tr>
<td>Web Proxy Operating Mode</td>
<td>30</td>
</tr>
<tr>
<td>Router/Default Gateway Configuration</td>
<td>30</td>
</tr>
<tr>
<td>Client Configuration</td>
<td>31</td>
</tr>
<tr>
<td>12. Testing & Validation</td>
<td>31</td>
</tr>
<tr>
<td>Layer 4 - Current Connections</td>
<td>31</td>
</tr>
<tr>
<td>13. Technical Support</td>
<td>32</td>
</tr>
<tr>
<td>14. Further Documentation</td>
<td>32</td>
</tr>
<tr>
<td>15. Conclusion</td>
<td>32</td>
</tr>
<tr>
<td>16. Appendix</td>
<td>33</td>
</tr>
<tr>
<td>1 - Clustered Pair Configuration – Adding a Slave Unit</td>
<td>33</td>
</tr>
<tr>
<td>2 - Modified Transparent Mode Firewall Rules</td>
<td>35</td>
</tr>
<tr>
<td>17. Document Revision History</td>
<td>36</td>
</tr>
</tbody>
</table>
1. About this Guide

This guide details the steps required to configure a load balanced Web Proxy/Filter/Gateway environment utilizing Loadbalancer.org appliances. It covers the configuration of the load balancers and also any Web Proxy/Filter/Gateway configuration changes that are required to enable load balancing.

Note: A number of vendor specific guides are also available. Please refer to this URL for details.

For more information about initial appliance deployment, network configuration and using the Web User Interface (WebUI), please also refer to the relevant Administration Manual:

- v7 Administration Manual
- v8 Administration Manual

2. Loadbalancer.org Appliances Supported

All our products can be used for load balancing Web Proxies/Filters. The complete list of models is shown below:

<table>
<thead>
<tr>
<th>Discontinued Models</th>
<th>Current Models *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise R16</td>
<td>Enterprise R20</td>
</tr>
<tr>
<td>Enterprise VA R16</td>
<td>Enterprise MAX</td>
</tr>
<tr>
<td>Enterprise VA</td>
<td>Enterprise 10G</td>
</tr>
<tr>
<td>Enterprise R320</td>
<td>Enterprise 40G</td>
</tr>
<tr>
<td></td>
<td>Enterprise Ultra</td>
</tr>
<tr>
<td></td>
<td>Enterprise VA R20</td>
</tr>
<tr>
<td></td>
<td>Enterprise VA MAX</td>
</tr>
<tr>
<td></td>
<td>Enterprise AWS **</td>
</tr>
<tr>
<td></td>
<td>Enterprise AZURE **</td>
</tr>
</tbody>
</table>

* For full specifications of these models please refer to: http://www.loadbalancer.org/products/hardware

** Some features may not be supported, please check with Loadbalancer.org support

3. Loadbalancer.org Software Versions Supported

- V7.6.4 and later

4. Web Proxies/Filters/Gateways

Web Proxies/Filters/Gateways provide a number of functions to permit organizations to control the way their staff access the Internet. These products are often appliance based and provide functionality including:
5. Benefits of Implementing a Load Balancer
Implementing Loadbalancer.org appliances enables multiple Web Proxies/Filters/Gateways to be deployed in a cluster. This provides the following key benefits:

- **High-Availability** – If a Web Proxy fails, service is not interrupted
- **Maintenance** – Web Proxies can easily be taken out of the cluster for maintenance
- **Performance** – For additional performance simply add more Web Proxies to the cluster

6. Load Balancer Configuration Options
The following sections describe the various load balancer deployment modes and persistence options that are used when load balancing Web Proxies/Filters/Gateways.

Deployment Modes

Layer 4 (Recommended)

DR Mode - Direct Server Return Mode (Recommended)

In this mode, traffic from the client to the Web Proxy passes via the load balancer, return traffic passes directly back to the client which maximizes performance. Direct routing works by changing the destination MAC address of the incoming packet on the fly which is very fast. This mode is transparent by default meaning that the Web Proxy sees the real client IP address and not the IP address of the load balancer.

Due to its speed, overall simplicity and effectiveness, Direct Routing (DR) mode with source IP persistence is our recommended method and can be used in both Explicit Proxy Mode & Transparent Routed Proxy Mode.

NAT Mode - Network Address Translation Mode

This mode requires the implementation of a two-arm infrastructure with an internal and external subnet to carry out the translation (the same way a firewall works). Return traffic MUST pass back via the load balancer. This can be achieved by either setting the default gateway on the Web Proxies to be the load balancer or by configuring a static route on the Web Proxies that forces client return traffic to pass back via the load balancer. This mode offers high performance and like DR mode is transparent by default.
Layer 7

SNAT Mode - Source Network Address Translation

Using HAProxy in SNAT mode means that the load balancer is acting as a full proxy and therefore it doesn't have the same raw throughput as the layer 4 methods. Also, this method is not transparent by default so the real servers (i.e. the Web Proxies) will see the source address of each request as the load balancer's IP address. This is generally not desirable, although this can be resolved in two ways: either by reading the X-Forwarded-For header that's included by default when using HAProxy, or by enabling TProxy on the load balancer. The issue with using TProxy is that the default gateway on the real servers must be changed to be the load balancer and it also requires a two-arm infrastructure with two subnets which complicates the deployment. The same requirements apply when using layer 4 NAT mode as mentioned above. SNAT mode does not have the raw throughput of the layer 4 solutions and is therefore not normally used for Web Proxy load balancing deployments.

Persistence / Server Affinity

Persistence may or may not be required and depends on the specific web proxy being used. Two possible methods are described in the following sections.

Source IP Address (Recommended)

Source IP persistence is the default option for Layer 4 services and can easily be selected for Layer 7 services. When set, clients connecting from the same source IP address within the persistence timeout period (the default is 5 minutes) will always be sent to the same Web Proxy.

Destination Hash

Another option at Layer 4 is to change the load balancing algorithm (i.e. the “scheduler”) to destination hash (DH). This causes the load balancer to select the Web Proxy based on a hash of the destination IP address. This causes session requests to be directed at the same server based solely on the destination IP address of a packet which therefore makes client connections persistent for a particular Internet host.

Since this setting is a scheduler, the way connections are load balanced will also change. However it should still provide a well balanced distribution of client sessions between the Web Proxies.

7. Web Proxy Deployment Modes

There are two implementation methods that are typically used – Explicit Proxy Mode & Transparent Routed Proxy Mode. The specific terminology used by each vendor may vary, but will be similar.

1 – Explicit Proxy Mode (Recommended)

This mode requires the load balancer’s VIP address to be defined in users browsers. This means that the load balancer will receive client requests and distribute these requests across the back-end Web Proxies. Please refer to the section starting on page 11 for configuration details.

2 – Transparent Routed Proxy Mode

With this mode, client requests must be routed to the load balancer/proxy cluster. This can be achieved by either setting the default gateway on the client PCs to be the load balancer, or by adding rules to the default gateway device. Rules would typically be configured for HTTP & HTTPS traffic on ports 80 and 443. Please refer to the section starting on
Note: Various limitations relating to HTTPS inspection and client authentication may affect your particular Web Proxy appliance when deployed in Transparent Mode. Please check with your particular vendor to determine if this is the case and help choose the most appropriate deployment mode to use.
8. Summary of Deployment Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Web Proxy Mode</th>
<th>Load Balancer Mode</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1A (Recommended)</td>
<td>Explicit Proxy Mode</td>
<td>DR Mode</td>
<td>The Web Proxies must be configured to accept traffic for the VIP. Please refer to page 11 for configuration details.</td>
</tr>
<tr>
<td>Option 1B</td>
<td>Explicit Proxy Mode</td>
<td>NAT Mode</td>
<td>The load balancer must be set as the default gateway for the Web Proxies. Please refer to page 15 for configuration details.</td>
</tr>
<tr>
<td>Option 1C</td>
<td>Explicit Proxy Mode</td>
<td>NAT Mode</td>
<td>A static route must be configured on the Web Proxies to send client return traffic back via the load balancer. Please refer to page 20 for configuration details.</td>
</tr>
<tr>
<td>Option 2</td>
<td>Transparent Routed Proxy Mode</td>
<td>DR Mode</td>
<td>Firewall rules must be added to the load balancer to transparently send traffic to the Web Proxies. Please refer to page 26 for configuration details.</td>
</tr>
</tbody>
</table>

9. Loadbalancer.org Appliance – the Basics

Virtual Appliance Download & Deployment
A fully featured, fully supported 30 day trial is available if you are conducting a PoC (Proof of Concept) deployment. The VA is currently available for VMware, Virtual Box, Hyper-V, KVM and XEN and has been optimized for each Hypervisor. By default, the VA is allocated 1 CPU, 2GB of RAM and has an 8GB virtual disk. The Virtual Appliance can be downloaded here.
Note: The same download is used for the licensed product, the only difference is that a license key file (supplied by our sales team when the product is purchased) must be applied using the appliance's WebUI.

Note: Please refer to the Administration Manual and the ReadMe.txt text file included in the VA download for more detailed information on deploying the VA using various Hypervisors.

Initial Network Configuration

The IP address, subnet mask, default gateway and DNS settings can be configured in several ways as detailed below:

Method 1 - Using the Network Setup Wizard at the console

After boot up, follow the instructions on the console to configure the IP address, subnet mask, default gateway and DNS settings.

Method 2 - Using the WebUI

Using a browser, connect to the WebUI on the default IP address/port: https://192.168.2.21:9443

To set the IP address & subnet mask, use: Local Configuration > Network Interface Configuration
To set the default gateway, use: Local Configuration > Routing
To configure DNS settings, use: Local Configuration > Hostname & DNS

Accessing the Web User Interface (WebUI)

1. Browse to the following URL: https://192.168.2.21:9443/lbadmin/
 (replace with your IP address if it's been changed)
 * Note the port number → 9443

2. Login to the WebUI:

 Username: loadbalancer
 Password: loadbalancer

 Note: To change the password, use the WebUI menu option: Maintenance > Passwords.
Once logged in, the WebUI will be displayed as shown below:

HA Clustered Pair Configuration

Loadbalancer.org recommend that load balancer appliances are deployed in pairs for high availability. In this guide a single unit is deployed first, adding a secondary slave unit is covered in section 1 of the Appendix on page 33.
10. Option 1 – Explicit Proxy Mode (Recommended)

Option 1A – Using DR (Direct Return) Mode (Recommended)

Deployment Architecture

Notes:
- Browser settings on client PC’s must be changed to point at the Virtual Service (VIP) on the load balancer (see page 24)
• The load balancer is configured in one-arm Layer 4 DR mode
• The Web Proxies must be configured to accept traffic for the VIP (see page 13)
• Loadbalancer.org recommend that load balancer appliances are deployed in pairs for high availability. In this guide a single unit is deployed first, adding a secondary slave unit is covered in section 1 of the Appendix on page 33

Load Balancer Configuration

Create the Virtual Service (VIP)
1. Using the WebUI, navigate to: Cluster Configuration > Layer 4 – Virtual Services
2. Click Add a New Virtual Service
3. Enter the following details:
 - Enter an appropriate label (name) for the VIP, e.g. Proxy
 - Set the Virtual Service IP address field to the required IP address, e.g. 192.168.2.202
 - Set the Virtual Service Ports field to the required port, e.g. 8080
 - Ensure that Protocol is set to TCP
 - Ensure that Forwarding Method is set to Direct Routing
 - Click Update
4. Now click Modify next to the newly created VIP
5. Ensure Persistence is enabled and set Persistence Timeout to 3600 (i.e. 1 hour)
6. Click Update

Define the Real Servers (RIPs)
1. Using the WebUI, navigate to: Cluster Configuration > Layer 4 – Real Servers
2. Click Add a New Real Server next to the newly created VIP
3. Enter the following details:

![Web Proxy Appliance Configuration Form](image)

4. Enter an appropriate label (name) for the first Web Proxy, e.g. **Proxy1**
5. Change the **Real Server IP Address** field to the required IP address, e.g. **192.168.2.210**
6. Click **Update**
7. Repeat the above steps to add your other Web Proxy(s)

Web Proxy Appliance Configuration

Modify the Web Proxies to accept traffic for the VIP

As mentioned previously, DR mode is our recommended load balancer operating mode. To use this mode, changes are required to the real servers, i.e. the Web Proxies. The real servers must accept traffic for the VIP, but they must not respond to any ARP requests for that IP, only the VIP should do this.

To configure a Linux based Web Proxy to accept traffic for the VIP, the `iptables` command below must be added to an appropriate startup script such as `/etc/rc.local` so that it is automatically executed each time the Web Proxy boots. It can also be executed immediately by running the command at the command prompt, but the setting will be lost after a reboot unless the command has been added to a startup script.

```
iptables -t nat -A PREROUTING -p tcp -d <VIP address> -j REDIRECT
```

e.g.

```
iptables -t nat -A PREROUTING -p tcp -d 192.168.2.202 -j REDIRECT
```

i.e. Redirect any incoming packets destined for the VIP to the local address

Note: For more information please refer to the Administration Manual and search for 'ARP Problem'.

© Copyright Loadbalancer.org - www.loadbalancer.org - sales@loadbalancer.org
Note: Vendors such as Bloxx and Smoothwall have options in their Web User Interface that allow this to be easily configured, so command line entries are not required. Please consult your specific vendor or loadbalancer.org for more information.

Finalize Settings
Now refer to the section “Configuration Settings Common to Options 1A, 1B & 1C” on page 23 to finalize Web Proxy settings and configure client browser settings.
Option 1B – Using NAT Mode

Deployment Architecture

Notes:

- Browser settings on client PC’s must be changed to point at the Virtual Service (VIP) on the load balancer (see page 24)
- The load balancer is configured in two-arm Layer 4 NAT mode
- Return traffic MUST pass back via the load balancer. To enable this, the default gateway for the Web Proxies is
configured to be the load balancer. For an HA pair, a floating IP address must be configured to allow the gateway IP to move between master and slave in the event of a failover (see page 16).

- Loadbalancer.org recommend that load balancer appliances are deployed in pairs for high availability. In this guide a single unit is deployed first, adding a secondary slave unit is covered in section 1 of the Appendix on page 33.

Load Balancer Configuration

Configure Network Settings

Two interfaces are required. Typically eth0 is used for the internal (Web Proxy) subnet and eth1 is used for the external (client & VIP) subnet, although this is not mandatory since interfaces can be used as required / preferred.

To configure network settings on the load balancer:

1. Ensure that the required cables are plugged in (hardware) or virtual NICs are connected (virtual)
2. Using the WebUI, navigate to: Local Configuration > Network Interface Configuration
3. Define the required IP addresses and subnet mask:

4. Configure the required IP address for eth0, e.g. 192.168.4.200/24
5. Configure the required IP address for eth1, e.g. 192.168.2.200/24
6. Click Configure Interfaces

Define a Floating IP to be used as the Default Gateway for the Web Proxies

As mentioned, when using a clustered pair of load balancers for HA (our recommended configuration), a floating IP must be used as the default gateway for the Web Proxies. This will 'float' between the master and slave units in the event of a failover or failback. This ensures that the Web Proxies always have a consistent return path via the load balancer – whether the master or slave is active.

To configure a Floating IP:
1. Using the WebUI, navigate to: **Cluster Configuration > Floating IP's**

 ![New Floating IP](image)

2. Define a suitable IP address for the default gateway, e.g. **192.168.4.205**

3. Click **Add Floating IP**

Create the Virtual Service (VIP)

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 4 – Virtual Services**

2. Click **Add a New Virtual Service**

3. Enter the following details:

 ![Virtual Service Details](image)

4. Enter an appropriate label (name) for the VIP, e.g. **Proxy**

5. Set the **Virtual Service IP address** field to the required IP address, e.g. **192.168.2.202**

6. Set the **Virtual Service Ports** field to the required port, e.g. **8080**

7. Ensure that **Protocol** is set to **TCP**

8. Ensure that **Forwarding Method** is set to **NAT**

9. Click **Update**

10. Now click **Modify** next to the newly created VIP

11. Ensure **Persistence** is enabled and set **Persistence Timeout** to **3600** (i.e. 1 hour)

12. Click **Update**

Define the Real Servers (RIPs)

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 4 – Real Servers**

2. Click **Add a new Real Server** next to the newly created VIP

3. Enter the following details:
4. Enter an appropriate label (name) for the first Web Proxy, e.g. **Proxy1**

5. Set the **Real Server IP Address** field to the required IP address, e.g. **192.168.4.210**

6. Set the **Real Server Port** field to the required port, e.g. **8080**

7. Click **Update**

8. Repeat the above steps to add your other Web Proxy(s)

Enable Auto-NAT

By default, servers behind the load balancer in a NAT configuration will not have access to the outside network. By enabling Auto-NAT, servers (i.e. the Web Proxies) will have their requests automatically mapped to the load balancer’s external IP address. The default configuration is to map all requests originating from internal network eth0 to the external IP on eth1. A different interface can be selected if required.

To enable Auto-NAT on the load balancer:

1. Using the WebUI, navigate to: *Cluster Configuration > Layer 4 – Advanced configuration*

2. Set the **Auto-NAT** field to the external interface. As mentioned the default configuration is to use eth1 and the external interface and eth1 as the internal interface, but can be set to suit your needs.

3. Click **Update**

Web Proxy Configuration
Configure the Default Gateway

As mentioned, Option 1B requires the default gateway on the Web Proxies to be the load balancer. When using an HA pair of load balancers, the gateway on the load balancer must be a Floating IP to provide a consistent return path via the load balancer – whether the master or slave is active. Page 16 details how to create the Floating IP.

Note: Please refer to the relevant Web Proxy documentation for instructions on setting the default gateway. This should be done on all Web Proxies.

Finalize Settings

Now refer to the section “Configuration Settings Common to Options 1A, 1B & 1C” on page 23 to finalize Web Proxy settings and configure client browser settings.
Option 1C – Using NAT Mode (Preferred NAT Topology)

Deployment Architecture

Notes:

- Browser settings on client PC’s must be changed to point at the Virtual Service (VIP) on the load balancer (see page 24).
- The load balancer is configured in two-arm Layer 4 NAT mode.
- Return traffic MUST pass back via the load balancer. To enable this, a static route is configured on the Web Proxies to send return traffic back via the load balancer. For an HA pair, a floating IP address must be configured to allow the gateway to move between master and slave in the event of a failover (see page 21).
• This method is more efficient & faster than Option 1B since the Web Proxies can access the Internet directly rather than going via the load balancer

• Loadbalancer.org recommend that load balancer appliances are deployed in pairs for high availability. In this guide a single unit is deployed first, adding a secondary slave unit is covered in section 1 of the Appendix on page 33

Load Balancer Configuration

Configure Network Settings

Two interfaces are required. Typically eth0 is used for the internal (Web Proxy) subnet and eth1 is used for the external (client & VIP) subnet, although this is not mandatory since interfaces can be used as required / preferred.

To configure network settings on the load balancer:

1. Ensure that the required cables are plugged in (hardware) or virtual NICs are connected (virtual)
2. Using the WebUI, navigate to: Local Configuration > Network Interface Configuration
3. Define the required IP addresses and subnet mask:

4. Configure the required IP address for eth0, e.g. 192.168.4.200/24
5. Configure the required IP address for eth1, e.g. 192.168.2.200/24
6. Click Configure Interfaces

Define a Floating IP to be used as the gateway for the Static Route on the Web Proxies

As mentioned, when using a clustered pair of load balancers for HA (our recommended configuration), a floating IP must be used as the gateway for the static route on the Web Proxies. This will 'float' between the master and slave units in the event of a failover or failback. This ensures that the Web Proxies always have a consistent return path via the load balancer – whether the master or slave is active.

To configure a Floating IP:
1. Using the WebUI, navigate to: Cluster Configuration > Floating IP’s

![New Floating IP](image)

2. Define a suitable IP address for the default gateway, e.g. **192.168.4.205**
3. Click **Add Floating IP**

Create the Virtual Service (VIP)

1. Using the WebUI, navigate to: Cluster Configuration > Layer 4 – Virtual Services
2. Click **Add a New Virtual Service**
3. Enter the following details:

 ![Virtual Service Details](image)

4. Enter an appropriate label (name) for the VIP, e.g. **Proxy**
5. Set the Virtual Service IP address field to the required IP address, e.g. **192.168.2.202**
6. Set the Virtual Service Ports field to the required port, e.g. **8080**
7. Ensure that Protocol is set to **TCP**
8. Ensure that Forwarding Method is set to **NAT**
9. Click **Update**
10. Now click **Modify** next to the newly created VIP
11. Ensure Persistence is enabled and set Persistence Timeout to **3600** (i.e. 1 hour)
12. Click **Update**

Define the Real Servers (RIPs)

1. Using the WebUI, navigate to: Cluster Configuration > Layer 4 – Real Servers
2. Click **Add a new Real Server** next to the newly created VIP
3. Enter the following details:
4. Enter an appropriate label (name) for the first Web Proxy, e.g. Proxy1
5. Set the Real Server IP Address field to the required IP address, e.g. 192.168.4.210
6. Set the Real Server Port field to the required port, e.g. 8080
7. Click Update
8. Repeat the above steps to add your other Web Proxy(s)

Web Proxy Configuration

Configure a Static Route
As mentioned, Option 1C requires a Static Route to be defined on the Web Proxies that forces client return traffic to pass back via the load balancer. When using an HA pair of load balancers, the gateway for the static route must be a Floating IP to provide a consistent return path via the load balancer – whether the master or slave is active. Page 21 details how to create the Floating IP.

Note: Please refer to the relevant Web Proxy documentation for instructions on configuring a Static Route. This should be done on all Web Proxies.

Finalize Settings
Now refer to the section “Configuration Settings Common to Options 1A, 1B & 1C” below to finalize web proxy and client browser settings.

Configuration Settings Common to Options 1A, 1B & 1C
The steps in the following 2 sub sections must be followed for options 1A, 1B & 1C.

Web Proxy Operating Mode
Typically, there is a setting in the WebUI of the Web Proxy to allow the selection of either Explicit Proxy Mode or Transparent Routed Proxy Mode.
For Options 1A, 1B & 1C this should be set to Explicit Proxy Mode. The exact terminology does vary between vendors so please check your specific appliance.

Client Configuration

Client browser settings must be set so that browsers connect via the VIP. In a Microsoft based LAN environment, this is typically achieved using AD group policy.

Note: Depending on your requirements, it may be necessary to use an FQDN rather than an IP address for the Proxy server address. If you use an FQDN, make sure you have a valid DNS configuration that correctly resolves the hostname.

Browser Network Settings:
Proxy Settings

Servers

<table>
<thead>
<tr>
<th>Type</th>
<th>Proxy address to use</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>192.168.2.202</td>
<td>8080</td>
</tr>
<tr>
<td>Secure</td>
<td>192.168.2.202</td>
<td>8000</td>
</tr>
<tr>
<td>FTP</td>
<td>192.168.2.202</td>
<td>8080</td>
</tr>
<tr>
<td>Socks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Use the same proxy server for all protocols

Exceptions

Do not use proxy server for addresses beginning with:

```
192.168*
```

Use semicolons (;) to separate entries.

[OK] [Cancel]
11. Option 2 - Transparent Routed Proxy Mode

Deployment Architecture

Notes:

- Rules must be added to the router/firewall so that the required traffic (typically HTTP & HTTPS on port 80 & 443) is sent transparently to the load balancer, please see page 30 for example rules for a Linux router
- As with Explicit Proxy Mode, the load balancer is configured in Layer 4 DR mode
- Firewall rules must be added to the load balancer to transparently send traffic to the Web Proxies (see page 28)
• Loadbalancer.org recommend that load balancer appliances are deployed in pairs for high availability. In this guide a single unit is deployed first, adding a secondary slave unit is covered in section 1 of the Appendix on page 33

Load Balancer Configuration

Create The Virtual Service (VIP)

1. Using the WebUI, navigate to: Cluster Configuration > Layer 4 – Virtual Services
2. Click Add a New Virtual Service
3. Enter the following details:

4. Enter an appropriate label (name) for the VIP, e.g. Proxy
5. Change the Virtual Service IP address field to 1

Note: This is the reference number for the ‘Firewall Mark’. The same reference number is used when configuring the firewall rules – please see page 28 for more details.

6. Clear the Virtual Service Ports field, the ports are defined in the firewall rules on page 28
7. Ensure that Protocol is set to Firewall Marks

Note: The ports field will be disabled when this is done.

8. Ensure that Forwarding Method is set to Direct Routing
9. Click Update
10. Now click Modify next to the newly created VIP
11. Ensure Persistence is enabled and set Persistence Timeout to 3600 (i.e. 1 hour)
12. Under the Health Checks section change Check Type to Ping Server
13. Click Update

Add The Floating IP
1. Using the WebUI, navigate to: Cluster Configuration > Floating IPs

![New Floating IP](192.168.2.262)

2. Enter an appropriate IP address for the Virtual Service, e.g. 192.168.2.202
3. Click Add Floating IP

Configure Firewall Rules
1. Using the WebUI, navigate to: Maintenance > Firewall Script
2. Scroll down to the Firewall Marks section
3. Add the following lines to this section as shown in the screen shot below:

```bash
iptables -t mangle -A PREROUTING -p tcp --dport 80 -j MARK --set-mark 1
iptables -t mangle -A PREROUTING -p tcp --dport 443 -j MARK --set-mark 1
ip rule add prio 100 fwmark 1 table 100
ip route add local 0/0 dev lo table 100
```

Note: Please see section 2 in the Appendix if you intend to forward ALL traffic to the web proxies.
Define The Real Servers (RIPs)

1. Using the WebUI, navigate to: Cluster Configuration > Layer 4 – Real Servers
2. Click Add a New Real Server next to the newly created VIP
3. Enter the following details:

 - **Label**: Proxy1
 - **Real Server IP Address**: 192.168.2.210
 - **Weight**: 100
 - **Minimum Connections**: 0
 - **Maximum Connections**: 0

4. Enter an appropriate label (name) for the first Web Proxy, e.g. Proxy1
5. Change the Real Server IP Address field to the required IP address, e.g. 192.168.2.210
6. Click Update
7. Repeat the above steps to add your other Web Proxy(s)

Web Proxy Appliance Configuration

Web Proxy Operating Mode
Typically, there is a setting in the WebUI of the Web Proxy to allow the selection of either Explicit Proxy Mode or Transparent Routed Proxy Mode.

For Option 2 this should be set to Transparent Routed Proxy Mode. The exact terminology does vary between vendors so please check your specific appliance.

Note: When using Transparent Mode, it's not necessary to modify the Web Proxy to accept traffic destined for the VIP, this is only required when using Explicit Proxy Mode.

Router/Default Gateway Configuration
Depending on your network configuration, rules must be added to the router/default gateway so that all required traffic (typically HTTP & HTTPS on port 80 & 443) is sent to the floating IP address on the load balancer. The load balancer then distributes this traffic between the Web Proxies. The example shown below is for a Linux based router:

Example iptables rules for a Linux based router:

```bash
SUBNET="192.168.2.0/24"
FWMARK="5"
TABLE="10"
LOADBALANCER ="192.168.2.202"

iptables -t mangle -A PREROUTING -s $SUBNET -p tcp -m tcp --dport 80 -j MARK --set-mark $FWMARK
iptables -t mangle -A PREROUTING -s $SUBNET -p tcp -m tcp --dport 443 -j MARK --set-mark $FWMARK

ip route add default via $LOADBALANCER dev eth3 table $TABLE
ip rule add fwmark $FWMARK table $TABLE
```

This example uses policy routing via firewall marks. This works by first selecting and marking the packets we want to be sent to the Web Proxy, i.e. all packets on port 80 & 443. Then, when the kernel goes to make a routing decision, the marked packets aren't routed using the normal routing table, instead via table 10 in this case. Table 10 has only one entry: route packets to the Web Proxy.

Note: This is required when no changes have been made to the clients default gateway settings.
Client Configuration

If rules are configured on the router as described in the section above, no client change are required. If such rules are not configured, then the default gateway on the client PCs must be modified to be the load balancer.

12. Testing & Validation

To verify that the traffic is passing through the load balancer correctly the following reporting options can be used:

System Overview

Reports > Layer 4 Status

Reports > Layer 4 Current Connections

Several reporting and dashboard options are also available on the web proxies, for this please refer to your specific vendors documentation.

Layer 4 – Current Connections

Explicit Proxy Mode

The example screen shot below illustrates that the test client (192.168.64.7) sends requests to the VIP (192.168.111.88), the load balancer then forwards the request onto the Web Proxy (192.168.64.60).

Transparent Mode

The example screen shot below illustrates the difference when running in transparent mode.
13. Technical Support
If you have any questions regarding the appliance or would like assistance designing your deployment, please don't hesitate to contact our support team: support@loadbalancer.org.

14. Further Documentation

15. Conclusion
Loadbalancer.org appliances provide a very cost effective solution for highly available load balanced Web Proxy/Filter environments.
Appendix

1 – Clustered Pair Configuration – Adding a Slave Unit

If you initially configured just the master unit and now need to add a slave - our recommended procedure, please refer to the relevant section below for more details:

Note: A number of settings are not replicated as part of the master/slave pairing process and therefore must be manually configured on the slave appliance. These are listed below:

- Hostname & DNS settings
- Network settings including IP addresses, bonding configuration and VLANS
- Routing configuration including default gateways and static routes
- Date & time settings
- Physical – Advanced Configuration settings including Internet Proxy IP address & port, Firewall table size, SMTP relay and Syslog server
- SNMP settings
- Graphing settings
- Firewall Script & Firewall Lockdown Script settings
- Software updates

Version 7:

Please refer to Chapter 8 – Appliance Clustering for HA in the v7 Administration Manual.

Version 8:

To add a slave node – i.e. create a highly available clustered pair:

- Deploy a second appliance that will be the slave and configure initial network settings
- using the WebUI, navigate to: Cluster Configuration > High-Availability Configuration

CREATE A CLUSTED PAIR

© Copyright Loadbalancer.org - www.loadbalancer.org - sales@loadbalancer.org
• Specify the IP address and the loadbalancer users password (the default is 'loadbalancer') for the slave (peer) appliance as shown above

• Click **Add new node**

• The pairing process now commences as shown below:

![Create a Clustered Pair](image1)

• Once complete, the following will be displayed:

![High Availability Configuration - Master](image2)

• To finalize the configuration, restart heartbeat and any other services as prompted in the blue message box at the top of the screen

 Note: Clicking the **Restart Heartbeat** button on the master appliance will also automatically restart heartbeat on the slave appliance.

 Note: Please refer to chapter 9 – Appliance Clustering for HA in the [Administration Manual](#) for more detailed information on configuring HA with 2 appliances.
2 – Modified Transparent Mode Firewall Rules

If ALL traffic is to be forwarded to the Web Proxies, the firewall rules below should be used rather than the rules on page 28, i.e.:

Replace:

```
iptables -t mangle -A PREROUTING -p tcp --dport 80 -j MARK --set-mark 1
iptables -t mangle -A PREROUTING -p tcp --dport 443 -j MARK --set-mark 1
ip rule add prio 100 fwmark 1 table 100
ip route add local 0/0 dev lo table 100
```

With:

```
iptables -t mangle -A PREROUTING -p tcp -j MARK --set-mark 1
iptables -t mangle -A PREROUTING -p udp -j MARK --set-mark 1
iptables -t mangle -A PREROUTING -p tcp -d <LB-IP> -j MARK --set-mark 2
iptables -t mangle -A PREROUTING -p udp -d <LB-IP> -j MARK --set-mark 2
ip rule add prio 100 fwmark 1 table 100
ip route add local 0/0 dev lo table 100
```

Notes:

- `<LB-IP>` should be replaced with the base IP address of the load balancer (typically eth0), this is the address used by heartbeat and for administration purpose
- If these modified firewall rules are used, then either the default gateway for client PC’s should be changed to be the load balancer, or the rules on the router should be changed to forward all traffic to the load balancer
- This will only work for TCP and UDP traffic. So for example, ICMP and some VPN technologies will not work because the load balancer only supports TCP and UDP.

Don't hesitate to contact our support team if you need further assistance: support@loadbalancer.org
17. Document Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Change</th>
<th>Reason for Change</th>
<th>Changed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7.0</td>
<td>10th September 2019</td>
<td>Styling and layout</td>
<td>General styling updates</td>
<td>RJC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
About Loadbalancer.org

Loadbalancer.org's mission is to ensure that its clients' businesses are never interrupted. The load balancer experts ask the right questions to get to the heart of what matters, bringing a depth of understanding to each deployment. Experience enables Loadbalancer.org engineers to design less complex, unbreakable solutions - and to provide exceptional personalized support.