Load Balancing IBM Watson Health iConnect Access by Merative

Version 1.4.0
Table of Contents

1. About this Guide .. 3
2. Loadbalancer.org Appliances Supported 3
3. Software Versions Supported .. 3
 3.1. Loadbalancer.org Appliance ... 3
 3.2. IBM Watson Health iConnect Access by Merative 3
4. Load Balancing iConnect Access .. 3
 4.1. Load Balanced Ports ... 3
 4.2. Deployment Concept .. 4
 4.3. VIP Requirements .. 4
 4.4. Deployment Mode .. 4
5. Loadbalancer.org Appliance – the Basics 4
 5.1. Virtual Appliance .. 4
 5.2. Initial Network Configuration ... 5
 5.3. Accessing the Appliance WebUI 5
 Main Menu Options ... 6
 5.4. Appliance Software Update ... 7
 Determining the Current Software Version 7
 Checking for Updates using Online Update 7
 Using Offline Update .. 8
 5.5. Ports Used by the Appliance .. 8
 5.6. HA Clustered Pair Configuration 9
6. Appliance & iConnect Access Configuration 9
 6.1. Appliance Configuration .. 9
 Configuring VIP1 – ICA_WEB ... 9
 Configuring VIP2 – ICA_DICOM 10
 6.2. iConnect Access Configuration 11
 Solve the ARP Problem .. 12
7. Testing & Verification ... 17
 7.1. Checking the Status Using the System Overview 17
 7.2. Client Connection Tests ... 18
8. Technical Support .. 18
9. Additional Documentation .. 18
10. Appendix .. 19
 10.1. Configuring HA - Adding a Secondary Appliance 19
 Non-Replicated Settings .. 19
 Configuring the HA Clustered Pair 20
11. Document Revision History .. 22
1. About this Guide
This guide details the steps required to configure a load balanced IBM Watson Health iConnect Access by Merative environment utilizing Loadbalancer.org appliances. It covers the configuration of the load balancers and also any iConnect Access Server configuration changes that are required to enable load balancing.

For more information about initial appliance deployment, network configuration and using the Web User Interface (WebUI), please also refer to the Administration Manual.

2. Loadbalancer.org Appliances Supported
All our products can be used with IBM Watson Health iConnect Access by Merative. For full specifications of available models please refer to https://www.loadbalancer.org/products.

Some features may not be available or fully supported in all cloud platforms due to platform specific limitations. For more details, please refer to the "Main Differences to our Standard (Non-Cloud) Product" section in the appropriate cloud platform Quick Start Guide or check with Loadbalancer.org support.

3. Software Versions Supported

3.1. Loadbalancer.org Appliance
• V8.9.1 and later

Note: The screenshots used throughout this document aim to track the latest Loadbalancer.org software version. If you’re using an older version, or the very latest, the screenshots presented here may not match your WebUI exactly.

3.2. IBM Watson Health iConnect Access by Merative
• All versions

4. Load Balancing iConnect Access
For high availability and scalability, IBM Watson Health recommend that multiple iConnect Access Servers are deployed in a load balanced cluster.

Note: It’s highly recommended that you have a working iConnect Access environment first before implementing the load balancer.

4.1. Load Balanced Ports
The following table shows the ports/services that are load balanced:

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocols</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 & 443</td>
<td>TCP</td>
<td>HTTP & HTTPS</td>
</tr>
<tr>
<td>Port</td>
<td>Protocols</td>
<td>Use</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>4444</td>
<td>TCP</td>
<td>DICOM</td>
</tr>
</tbody>
</table>

4.2. Deployment Concept

When iConnect Access is deployed with the load balancer, clients connect to the Virtual Services (VIPS) on the load balancer rather than connecting directly to one of the iConnect Access Servers. These connections are then load balanced across the iConnect Access Servers to distribute the load according to the load balancing algorithm selected.

![Diagram showing load balancing](image)

Note

The load balancer can be deployed as a single unit, although Loadbalancer.org recommends a clustered pair for resilience & high availability. Please refer to Configuring HA - Adding a Secondary Appliance for more details on configuring a clustered pair.

4.3. VIP Requirements

To provide load balancing and HA for iConnect Access, 2 VIPS are required as depicted in the diagram above, these are:

- VIP1 : ICA_WEB
- VIP2 : ICA_DICOM

4.4. Deployment Mode

The Virtual Services (VIPS) are configured using Layer 4 DR (Direct Return) mode. This mode offers the best possible performance since replies go directly from the iConnect Access Servers to the client, and not via the load balancer. To use this mode, the "ARP Problem" must be solved as explained in Solve the ARP Problem.

5. Loadbalancer.org Appliance – the Basics

5.1. Virtual Appliance
A fully featured, fully supported 30 day trial is available if you are conducting a PoC (Proof of Concept) deployment. The VA is currently available for VMware, Virtual Box, Hyper-V, KVM, XEN and Nutanix AHV and has been optimized for each Hypervisor. By default, the VA is allocated 2 vCPUs, 4GB of RAM and has a 20GB virtual disk. The Virtual Appliance can be downloaded here.

Note
- The same download is used for the licensed product, the only difference is that a license key file (supplied by our sales team when the product is purchased) must be applied using the appliance’s WebUI.

Note
- Please refer to Virtual Appliance Installation and the ReadMe.txt text file included in the VA download for additional information on deploying the VA using the various Hypervisors.

Note
- The VA has 4 network adapters. For VMware only the first adapter (eth0) is connected by default. For HyperV, KVM, XEN and Nutanix AHV all adapters are disconnected by default. Use the network configuration screen within the Hypervisor to connect the required adapters.

5.2. Initial Network Configuration

After boot up, follow the instructions on the appliance console to configure the management IP address, subnet mask, default gateway, DNS servers and other network and administrative settings.

Important
- Be sure to set a secure password for the load balancer, when prompted during the setup routine.

5.3. Accessing the Appliance WebUI

The WebUI is accessed using a web browser. By default, users are authenticated using Apache authentication. Users can also be authenticated against LDAP, LDAPS, Active Directory or Radius - for more information, please refer to External Authentication.

Note
- There are certain differences when accessing the WebUI for the cloud appliances. For details, please refer to the relevant Quick Start / Configuration Guide.

1. Using a browser, navigate to the following URL:

 Note
 - You’ll receive a warning about the WebUI’s SSL certificate. This is due to the default self signed certificate that is used. If preferred, you can upload your own certificate - for more information, please refer to Appliance Security Features.

 Note
 - If you need to change the port, IP address or protocol that the WebUI listens on, please refer to Service Socket Addresses.

2. Log in to the WebUI using the following credentials:
Username: loadbalancer
Password: <configured-during-network-setup-wizard>

Note: To change the password, use the WebUI menu option: Maintenance > Passwords.

Once logged in, the WebUI will be displayed as shown below:

3. You'll be asked if you want to run the Setup Wizard which can be used to configure layer 7 services. Click Dismiss if you're following a guide or want to configure the appliance manually or click Accept to start the wizard.

Main Menu Options
System Overview - Displays a graphical summary of all VIPs, RIPS and key appliance statistics
Local Configuration - Configure local host settings such as IP address, DNS, system time etc.
Cluster Configuration - Configure load balanced services such as VIPs & RIPs
Maintenance - Perform maintenance tasks such as service restarts and taking backups
View Configuration - Display the saved appliance configuration settings
Reports - View various appliance reports & graphs
Logs - View various appliance logs
Support - Create a support download, contact the support team & access useful links
Live Chat - Start a live chat session with one of our Support Engineers

5.4. Appliance Software Update
To ensure that the appliance(s) are running the latest software version, we recommend a software update check is performed.

Determining the Current Software Version
The software version is displayed at the bottom of the WebUI as shown in the example below:

Checking for Updates using Online Update

Note: By default, the appliance periodically contacts the Loadbalancer.org update server and checks for updates. An update check can also be manually triggered as detailed below.

1. Using the WebUI, navigate to: Maintenance > Software Update.
2. Select Online Update.
3. If the latest version is already installed, a message similar to the following will be displayed:

 Information: Version v8.11.1 is the current release. No updates are available

4. If an update is available, you'll be presented with a list of new features, improvements, bug fixes and security related updates.
5. Click Online Update to start the update process.

 Note: Do not navigate away whilst the update is ongoing, this may cause the update to fail.

6. Once complete (the update can take several minutes depending on download speed and upgrade version) the following message will be displayed:
7. If services need to be reloaded/restarted or the appliance needs a full restart, you’ll be prompted accordingly.

Using Offline Update

If the load balancer does not have access to the Internet, offline update can be used.

Note

Please contact support@loadbalancer.org to check if an update is available and obtain the latest offline update files.

To perform an offline update:

1. Using the WebUI, navigate to: **Maintenance > Software Update**.
2. Select **Offline Update**.
3. The following screen will be displayed:

Software Update

Offline Update

The following steps will lead you through offline update.

1. Contact loadbalancer.org support to obtain the offline update archive and checksum.
2. Save the archive and checksum to your local machine.
3. Select the archive and checksum files in the upload form below.
4. Click **Upload and Install** to begin the update process.

<table>
<thead>
<tr>
<th>Archive:</th>
<th>Choose File</th>
<th>No file chosen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checksum:</td>
<td>Choose File</td>
<td>No file chosen</td>
</tr>
</tbody>
</table>

 Upload and Install

4. Select the **Archive** and **Checksum** files.
5. Click **Upload and Install**.
6. If services need to be reloaded/restarted or the appliance needs a full restart, you’ll be prompted accordingly.

5.5. Ports Used by the Appliance

By default, the appliance uses the following TCP & UDP ports:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Port</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>22 *</td>
<td>SSH</td>
</tr>
<tr>
<td>TCP & UDP</td>
<td>53 *</td>
<td>DNS / GSLB</td>
</tr>
<tr>
<td>TCP & UDP</td>
<td>123</td>
<td>NTP</td>
</tr>
<tr>
<td>Protocol & Port</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>TCP & UDP 161 *</td>
<td>SNMP</td>
<td></td>
</tr>
<tr>
<td>UDP 6694</td>
<td>Heartbeat between Primary & Secondary appliances in HA mode</td>
<td></td>
</tr>
<tr>
<td>TCP 7778</td>
<td>HAPer proxy persistence table replication</td>
<td></td>
</tr>
<tr>
<td>TCP 9000 *</td>
<td>Gateway service (Centralized/Portal Management)</td>
<td></td>
</tr>
<tr>
<td>TCP 9080 *</td>
<td>WebUI - HTTP (disabled by default)</td>
<td></td>
</tr>
<tr>
<td>TCP 9081 *</td>
<td>Nginx fallback page</td>
<td></td>
</tr>
<tr>
<td>TCP 9443 *</td>
<td>WebUI - HTTPS</td>
<td></td>
</tr>
<tr>
<td>TCP 25565 *</td>
<td>Shuttle service (Centralized/Portal Management)</td>
<td></td>
</tr>
</tbody>
</table>

Note
The ports used for SSH, GSLB, SNMP, the WebUI, the fallback page, the gateway service and the shuttle service can be changed if required. For more information, please refer to Service Socket Addresses.

5.6. HA Clustered Pair Configuration
Loadbalancer.org recommend that load balancer appliances are deployed in pairs for high availability. In this guide a single unit is deployed first, adding a secondary unit is covered in Configuring HA - Adding a Secondary Appliance.

6. Appliance & iConnect Access Configuration

6.1. Appliance Configuration

Configuring VIP1 – ICA_WEB
a) Setting up the Virtual Service (VIP)

1. Using the WebUI, navigate to Cluster Configuration > Layer 4 – Virtual Services and click Add a new Virtual Service.
2. Enter the following details:
3. Enter an appropriate label (name) for the VIP, e.g. **ICA_WEB**.

4. Set the **Virtual Service IP** address field to the required IP address, e.g. **192.168.100.100**.

5. Set the **Virtual Service Ports** field to **80,443**.

6. Leave **Protocol** set to **TCP**.

7. Leave **Forwarding Method** set to **Direct Routing**.

8. Click **Update**.

9. Now click **Modify** next to the newly created VIP.

10. Scroll down to the **Health Checks** section.

11. Set the **Check Port** to **443**.

12. Click **Update**.

b) Setting up the Real Servers (RIPs)

1. Using the WebUI, navigate to **Cluster Configuration > Layer 4 – Real Servers** and click **Add a new Real Server** next to the newly created **ICA_WEB** VIP.

2. Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>ICA_WEB1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>192.168.100.110</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
<tr>
<td>Minimum Connections</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

3. Enter an appropriate label (name) for the RIP, e.g. **ICA_WEB1**.

4. Change the **Real Server IP Address** field to the required IP address, e.g. **192.168.100.110**.

5. Click **Update**.

6. Repeat these steps to add your other iConnect Access Server(s).

Configuring VIP2 – ICA_DICOM

a) Setting up the Virtual Service (VIP)

1. Using the WebUI, navigate to **Cluster Configuration > Layer 4 – Virtual Services** and click **Add a new Virtual Service**.

2. Enter the following details:
3. Enter an appropriate label (name) for the VIP, e.g. **ICA_DICOM**.
4. Set the **Virtual Service IP** address field to the required IP address, e.g. **192.168.100.100**.
5. Set the **Virtual Service Ports** field to **4444**.
6. Leave **Protocol** set to **TCP**.
7. Leave **Forwarding Method** set to **Direct Routing**.
8. Click **Update**.

b) Setting up the Real Servers (RIPs)

1. Using the WebUI, navigate to **Cluster Configuration > Layer 4 – Real Servers** and click **Add a new Real Server** next to the newly created ICA_DICOM VIP.
2. Enter the following details:

3. Enter an appropriate label (name) for the RIP, e.g. **ICA_DICOM1**.
4. Change the **Real Server IP Address** field to the required IP address, e.g. **192.168.100.110**.
5. Click **Update**.
6. Repeat these steps to add your other iConnect Access Server(s).

6.2. iConnect Access Configuration

As mentioned earlier, when using Layer 4 DR mode, the ARP problem must be solved. This involves configuring
each iConnect Access Server to be able to receive traffic destined for the VIP and ensuring that each iConnect Access Server does not respond to ARP requests for the VIP address – only the load balancer should do this.

Solve the ARP Problem

The steps below are for IPv4 addresses on Windows 2012 & later. For other versions of Windows & IPv6 configuration steps, please refer to DR Mode Considerations.

Note

The following steps must be performed on all iConnect Access Servers.

Windows Server 2012 & Later

Windows Server 2012 and later support Direct Routing (DR) mode through the use of the Microsoft Loopback Adapter that must be installed and configured on each load balanced (Real) Server. The IP address configured on the Loopback Adapter must be the same as the Virtual Service (VIP) address. This enables the server to receive packets that have their destination set as the VIP address. If a Real Server is included in multiple DR mode VIPs, an IP address for each VIP must be added to the Loopback Adapter.

In addition, the strong/weak host behavior must be configured on each Real Server. The weak host model allows packets with any IP to be sent or received via an interface. The strong host model only allows packets with an IP belonging to the interface to be sent or received.

Important

The following 3 steps must be completed on all Real Servers associated with the VIP.

Step 1 of 3: Install the Microsoft Loopback Adapter

1. Click Start, then run hdwwiz to start the Hardware Installation Wizard.
2. Once the Wizard has started, click Next.
3. Select Install the hardware that I manually select from a list (Advanced), click Next.
4. Select Network adapters, click Next.
5. Select Microsoft & Microsoft KM-Test Loopback Adapter, click Next.

6. Click Next to start the installation, when complete click Finish.

Step 2 of 3: Configure the Loopback Adapter

1. Open Control Panel and click Network and Sharing Center.

2. Click Change adapter settings.

3. Right-click the new Loopback Adapter and select Properties.

Note

You can configure IPv4 or IPv6 addresses or both depending on your requirements.

IPv4 Addresses

1. Uncheck all items except Internet Protocol Version 4 (TCP/IPv4) as shown below:
2. Ensure that **Internet Protocol Version (TCP/IPv4)** is selected, click **Properties** and configure the IP address to be the same as the Virtual Service address (VIP) with a subnet mask of **255.255.255.255**, e.g. **192.168.2.20/255.255.255.255** as shown below:

- **Note**: **192.168.2.20** is an example, make sure you specify the correct VIP address.

- **Note**: If a Real Server is included in multiple DR mode VIPs, an IP address for each VIP must be
3. Click **OK** then click **Close** to save and apply the new settings.

IPv6 Addresses

1. Uncheck all items except **Internet Protocol Version 6 (TCP/IPv6)** as shown below:

![IPv6 Properties](image)

2. Ensure that **Internet Protocol Version (TCP/IPv6)** is selected, click **Properties** and configure the IP address to be the same as the Virtual Service (VIP) and set the **Subnet Prefix Length** to be the same as your network setting, e.g. `2001:470:1f09:e72::15/64` as shown below:
2001:470:1f09:e72::15/64 is an example, make sure you specify the correct VIP address.

If a Real Server is included in multiple DR mode VIPs, an IP address for each VIP must be added to the Loopback Adapter.

3. Click **OK** then click **Close** to save and apply the new settings.

Step 3 of 3: Configure the strong/weak host behavior
The strong/weak host behavior can be configured using either of the following 2 methods:

- Option 1 - Using network shell (netsh) commands
- Option 2 - Using PowerShell cmdlets

The commands in this section assume that the LAN Adapter is named `net` and the Loopback Adapter is named `loopback` as shown in the example below:

Either adjust the commands to use the names allocated to your LAN and loopback adapters, or rename the adapters before running the commands. Names are case sensitive so make sure that the interface names used in the commands match the adapter names exactly.
Option 1 - Using Network Shell (netsh) Commands

To configure the correct strong/weak host behavior run the following commands:

For IPv4 addresses:

```
netsh interface ipv4 set interface "net" weakhostreceive=enabled
netsh interface ipv4 set interface "loopback" weakhostreceive=enabled
netsh interface ipv4 set interface "loopback" weakhostsend=enabled
```

For IPv6 addresses:

```
netsh interface ipv6 set interface "net" weakhostreceive=enabled
netsh interface ipv6 set interface "loopback" weakhostreceive=enabled
netsh interface ipv6 set interface "loopback" weakhostsend=enabled
netsh interface ipv6 set interface "loopback" dadtransmits=0
```

Option 2 - Using PowerShell Cmdlets

For IPv4 addresses:

```
Set-NetIpInterface -InterfaceAlias loopback -WeakHostReceive enabled -WeakHostSend enabled -DadTransmits 0 -AddressFamily IPv4
Set-NetIpInterface -InterfaceAlias net -WeakHostReceive enabled -AddressFamily IPv4
```

For IPv6 Addresses:

```
Set-NetIpInterface -InterfaceAlias loopback -WeakHostReceive enabled -WeakHostSend enabled -DadTransmits 0 -AddressFamily IPv6
Set-NetIpInterface -InterfaceAlias net -WeakHostReceive enabled -AddressFamily IPv6
```

7. Testing & Verification

For additional guidance on diagnosing and resolving any issues you may have, please also refer to Diagnostics & Troubleshooting.

7.1. Checking the Status Using the System Overview

The System Overview in the WebUI shows a graphical view of all VIPs & RIPs (i.e. the iConnect Access Servers) and shows the state/health of each server as well as the state of the cluster as a whole. This can be used to ensure all servers are up and available.
7.2. Client Connection Tests

Ensure that clients can connect via the load balancer to the iConnect Access Servers. For this, you’ll probably need to create new DNS records or modify your existing DNS records, replacing the IP addresses of individual servers with the IP address of the relevant Virtual Service on the load balancer.

8. Technical Support

For more details about configuring the appliance and assistance with designing your deployment please don’t hesitate to contact the support team using the following email address: support@loadbalancer.org.

9. Additional Documentation

For additional information, please refer to the Administration Manual.
10. Appendix

10.1. Configuring HA - Adding a Secondary Appliance

Our recommended configuration is to use a clustered HA pair of load balancers to provide a highly available and resilient load balancing solution. We recommend that the Primary appliance is fully configured first, then the Secondary appliance can be added to create an HA pair. Once the HA pair is configured, load balanced services must be configured and modified on the Primary appliance. The Secondary appliance will be automatically kept in sync.

Note

For Enterprise Azure, the HA pair should be configured first. For more information, please refer to the Azure Quick Start/Configuration Guide available in the documentation library.

The clustered HA pair uses Heartbeat to determine the state of the other appliance. Should the active device (normally the Primary) suffer a failure, the passive device (normally the Secondary) will take over.

Non-Replicated Settings

A number of settings are not replicated as part of the Primary/Secondary pairing process and therefore must be manually configured on the Secondary appliance. These are listed by WebUI menu option in the table below:

<table>
<thead>
<tr>
<th>WebUI Main Menu Option</th>
<th>Sub Menu Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Configuration</td>
<td>Hostname & DNS</td>
<td>Hostname and DNS settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Network Interface</td>
<td>Interface IP addresses, bonding configuration and VLANs</td>
</tr>
<tr>
<td></td>
<td>Configuration</td>
<td></td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Routing</td>
<td>Default gateways and static routes</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>System Date & time</td>
<td>Time and date related settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Physical – Advanced</td>
<td>Various appliance settings</td>
</tr>
<tr>
<td></td>
<td>Configuration</td>
<td></td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Portal Management</td>
<td>Portal management settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Security</td>
<td>Security settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>SNMP Configuration</td>
<td>SNMP settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Graphing</td>
<td>Graphing settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>License Key</td>
<td>Appliance licensing</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Backup & Restore</td>
<td>Local XML backups</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Software Updates</td>
<td>Appliance software updates</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Fallback Page</td>
<td>Fallback page configuration</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Script</td>
<td>Firewall (iptables) configuration</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Lockdown Wizard</td>
<td>Appliance management lockdown settings</td>
</tr>
</tbody>
</table>
Make sure that where any of the above have been configured on the Primary appliance, they're also configured on the Secondary.

Configuring the HA Clustered Pair

If you have already run the firewall lockdown wizard on either appliance, you'll need to ensure that it is temporarily disabled on both appliances whilst performing the pairing process.

1. Deploy a second appliance that will be the Secondary and configure initial network settings.
2. Using the WebUI on the Primary appliance, navigate to: Cluster Configuration > High-Availability Configuration.

Create a Clustered Pair

![Create a Clustered Pair](image)

3. Specify the IP address and the loadbalancer user's password for the Secondary (peer) appliance as shown in the example above.
4. Click Add new node.
5. The pairing process now commences as shown below:

![Create a Clustered Pair](image)

6. Once complete, the following will be displayed on the Primary appliance:
7. To finalize the configuration, restart heartbeat and any other services as prompted in the "Commit changes" message box at the top of the screen.

- **Note**

 Clicking the **Restart Heartbeat** button on the Primary appliance will also automatically restart heartbeat on the Secondary appliance.

- **Note**

 For more details on configuring HA with 2 appliances, please refer to [Appliance Clustering for HA](#).

- **Note**

 For details on testing and verifying HA, please refer to [Clustered Pair Diagnostics](#).
11. Document Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Change</th>
<th>Reason for Change</th>
<th>Changed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.0</td>
<td>2 August 2019</td>
<td>Styling and layout</td>
<td>General styling updates</td>
<td>RJC</td>
</tr>
<tr>
<td>1.1.1</td>
<td>24 August 2020</td>
<td>New title page</td>
<td>Branding update</td>
<td>AH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Canadian contact details</td>
<td>Change to Canadian contact details</td>
<td></td>
</tr>
<tr>
<td>1.2.0</td>
<td>1 October 2021</td>
<td>Converted the document to AsciiDoc</td>
<td>Move to new documentation system</td>
<td>AH, RJC, ZAC</td>
</tr>
<tr>
<td>1.3.0</td>
<td>6 September 2022</td>
<td>Renamed document and amended references to the product</td>
<td>Product acquisition by Merative</td>
<td>AH</td>
</tr>
<tr>
<td>1.3.1</td>
<td>5 January 2023</td>
<td>Combined software version information into one section</td>
<td>Housekeeping across all documentation</td>
<td>AH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added one level of section numbering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added software update instructions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added table of ports used by the appliance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reworded ‘Further Documentation’ section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.2</td>
<td>2 February 2023</td>
<td>Updated screenshots</td>
<td>Branding update</td>
<td>AH</td>
</tr>
<tr>
<td>1.3.3</td>
<td>7 March 2023</td>
<td>Removed conclusion section</td>
<td>Updates across all documentation</td>
<td>AH</td>
</tr>
<tr>
<td>1.4.0</td>
<td>24 March 2023</td>
<td>New document theme</td>
<td>Branding update</td>
<td>AH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified diagram colours</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
About Loadbalancer.org

Loadbalancer.org’s mission is to ensure that its clients’ businesses are never interrupted. The load balancer experts ask the right questions to get to the heart of what matters, bringing a depth of understanding to each deployment. Experience enables Loadbalancer.org engineers to design less complex, unbreakable solutions - and to provide exceptional personalized support.

Visit us: www.loadbalancer.org
Phone us: +44 (0)330 380 1064
Phone us: +1 833 274 2566
Email us: info@loadbalancer.org
Follow us: @loadbalancer.org