Contents

1. About this Guide.. 3
2. Loadbalancer.org Appliances Supported... 3
3. Loadbalancer.org Software Versions Supported... 3
4. Inspirata Dynamyx Software Versions Supported.. 3
5. Inspirata Dynamyx... 4
6. Load Balancing Overview.. 4
 Basic Concepts... 4
 Load Balancing Deployment Modes.. 5
 Our Recommendation.. 5
 Load Balanced Ports & Services.. 6
 Persistence (Server Affinity)... 6
 Server Health Checking... 6
7. Loadbalancer.org Appliance – the Basics.. 8
 Virtual Appliance Download & Deployment.. 8
 Initial Network Configuration.. 8
 Accessing the Web User Interface (WebUI).. 8
 Clustered Pair Configuration... 10
8. Appliance & Server Configuration.. 11
 Load Balancing Web Nodes (IIS).. 11
 Load Balancing Digital Archive.. 12
9. Testing & Verification... 15
 Using the System Overview... 15
 System Logs & Reports.. 15
10. Technical Support.. 15
11. Further Documentation.. 15
12. Conclusion... 16
13. Appendix... 17
 1 - Clustered Pair Configuration – Adding a Slave Unit .. 17
 2 - Solving the ARP Problem... 19
14. Document Revision History... 20

© Copyright Loadbalancer.org - www.loadbalancer.org - sales@loadbalancer.org
1. About this Guide

This guide details the steps required to configure a load balanced Inspirata Dynamyx environment utilizing Loadbalancer.org appliances.

For more information about initial appliance deployment, network configuration and using the Web User Interface (WebUI), please also refer to the relevant Administration Manual:

- v7 Administration Manual
- v8 Administration Manual

2. Loadbalancer.org Appliances Supported

The complete list of our products that are supported for load balancing Inspirata Dynamyx is shown below:

<table>
<thead>
<tr>
<th>Discontinued Models</th>
<th>Current Models *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise R16</td>
<td>Enterprise R20</td>
</tr>
<tr>
<td>Enterprise VA R16</td>
<td>Enterprise MAX</td>
</tr>
<tr>
<td>Enterprise VA</td>
<td>Enterprise 10G</td>
</tr>
<tr>
<td></td>
<td>Enterprise 40G</td>
</tr>
<tr>
<td></td>
<td>Enterprise Ultra</td>
</tr>
<tr>
<td></td>
<td>Enterprise VA R20</td>
</tr>
<tr>
<td></td>
<td>Enterprise VA MAX</td>
</tr>
</tbody>
</table>

* For full specifications of these models please refer to: http://www.loadbalancer.org/products/hardware

3. Loadbalancer.org Software Versions Supported

- V8.4 & later

4. Inspirata Dynamyx Software Versions Supported

- Inspirata Dynamyx – all versions
5. Inspirata Dynamyx

Dynamyx from Inspirata affords an ‘open’ architecture purposely designed to enable healthcare providers to arrive at their preferred blend of laboratory and diagnostic technologies. In providing a vendor-agnostic, end-to-end digital pathology solution deliberately architected for multi-vendor environments, Inspirata assist high-throughput clinical laboratories navigate the specific and frequent challenges of system interoperability while also allowing for increased resource flexibility and a future-proofing of investments culminating in an overall lower total cost of ownership.

6. Load Balancing Overview

Basic Concepts

To provide resilience and high availability, multiple Virtual Services (VIPs) are configured for the various protocols and systems. Clients and systems then connect to these VIPs rather than directly to the application servers. Each VIP can be configured in one of the following ways:

- **Load balanced mode**

 Load is distributed across all configured servers/endpoint

- **Failover mode**

 The second/backup server is used only when the first server/endpoint fails

Load Balancer Deployment

The following diagram shows a simplified view of Inspirata Dynamyx Digital Archive in load balancing mode:
The following diagram shows a simplified view of Inspirata Dynamyx Digital Archive Web Access in load balancing mode:

Notes:
- **VIP (Virtual IP)** – This is IP address presented by the load balancer. Clients and other systems connect to this rather than directly to the back end servers/endpoints.
- A single load balancer appliance can be used to load balance all services. More that one load balancer appliance may be required depending on throughput and physical network topology.
- All Loadbalancer.org models support unlimited VIPs except the Enterprise R20 which supports up to 5 VIPs, each with up to 4 load balanced servers.

Load Balancing Deployment Modes
The load balancer supports the following deployment modes:

Layer 4 DR Mode – this mode offers the best performance and requires limited physical Real Server changes. The load balanced application must be able to bind to the Real Servers own IP address and the VIP at the same time. This mode requires the “ARP Problem” to be solved as described on page 13. This mode is transparent, i.e. the Real Servers will see the source IP address of the client.

Layer 4 NAT Mode – this mode is also a high performance solution but not as fast as DR mode. It requires the implementation of a two-arm infrastructure with an internal and external subnet to carry out the translation (the same way a firewall works). Also each Real Server must use the load balancer as the default gateway. This mode is transparent, i.e. the Real Servers will see the source IP address of the client.

Layer 4 SNAT Mode – this mode is also a high performance solution but not as fast as the other layer 4 modes. It does not require any changes to the Real Servers and can be deployed in one-arm or two-arm mode. This mode is ideal for example when you want to load balance both TCP and UDP but you’re unable to use DR mode or NAT mode due to network topology or Real Server related reasons. This mode is non-transparent, i.e. the Real Servers will see the source IP address of the load balancer.
Layer 7 SNAT Mode – this mode offers greater flexibility but at lower performance levels. It supports HTTP cookie insertion, RDP cookies, Connection Broker integration and works very well with either Pound or STunnel when SSL termination is required. It does not require any changes to the Real Servers and can be deployed in one-arm or two-arm mode and. HAProxy is a high performance solution, but since it operates as a full proxy, it cannot perform as fast as the layer 4 solutions. This mode is non-transparent, i.e. the Real Servers will see the source IP address of the load balancer.

Our Recommendation
When load balancing Inspirata Dynamyx, we recommend that Layer 7 SNAT mode is used. This mode offers high performance with no real server or network changes required since replies go via the same path as the ingress traffic. Using a layer 7 configuration will lose client source IP address transparency. If source IP transparency is required, i.e. if the back end servers must see inbound traffic as originating from the client's true source address, then it is suggested to use either a layer 4 DR or NAT mode configuration. Ultimately, the final choice does depend on your specific requirements and infrastructure.

Note: If you are using Microsoft Windows Real Servers (i.e. the backend servers) make sure that Windows NLB (Network Load Balancing) is completely disabled to ensure that this does not interfere with the operation of the load balancer.

Load Balanced Ports & Services
The following table shows the typical ports/services that are load balanced.

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocols</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>443</td>
<td>TCP/HTTPS</td>
<td>Web based access to the digital archives</td>
</tr>
<tr>
<td>9001</td>
<td>TCP/Digital Archive</td>
<td>Communication between digital archives</td>
</tr>
</tbody>
</table>

Persistence (Server Affinity)
Source IP address persistence is used for the HTTPS-based protocol only. This ensures that a particular client will connect to the same load balanced server/endpoint for the duration of a session.

Server Health Checking
The default health check used for new virtual services is a TCP ‘connect to port’ check. This verifies that a given port is open and accepting connections. However, it does not necessarily guarantee that the associated service is fully operational. Also, repeated ongoing connections to a service's port may cause multiple log entries reporting incomplete connections or other issues.

More robust service-oriented health checks can be configured for both layer 4 and layer 7 services using the negotiate option. This effectively tests and verifies the running service.

For example, the load balancer can be configured to look for specific content on an HTTP web page on the load balanced Real Server. If the page can be opened and the content can be found then the check will have passed. If not, the check will fail and the server/endpoint will be marked as down.

If the service running is not HTTP based, a custom page could be setup on the load balanced servers that simply indicates service status. The load balancer can then use this for health checking.
The page to check and the content to be verified can easily be configured for layer 4 and layer 7 VIPs using the WebUI. Select the required negotiate option and configure the required settings. For more details on configuring health checks, please refer to Chapter 8 in the Administration Manual.

Note: The configuration examples in this guide use a TCP ‘connect to port’ check (the default) to check the health of load balanced servers.
7. Loadbalancer.org Appliance – the Basics

Virtual Appliance Download & Deployment
A fully featured, fully supported 30 day trial is available if you are conducting a PoC (Proof of Concept) deployment. The VA is currently available for VMware, Virtual Box, Hyper-V, KVM and XEN and has been optimized for each Hypervisor. By default, the VA is allocated 1 CPU, 2GB of RAM and has an 8GB virtual disk. The Virtual Appliance can be downloaded here.

Note: The same download is used for the licensed product, the only difference is that a license key file (supplied by our sales team when the product is purchased) must be applied using the appliance's WebUI.

Note: Please refer to the Administration Manual and the ReadMe.txt text file included in the VA download for more detailed information on deploying the VA using various Hypervisors.

Initial Network Configuration
The IP address, subnet mask, default gateway and DNS settings can be configured in several ways as detailed below:

Method 1 - Using the Network Setup Wizard at the console
After boot up, follow the instructions on the console to configure the IP address, subnet mask, default gateway and DNS settings.

Method 2 - Using the WebUI
Using a browser, connect to the WebUI on the default IP address/port: https://192.168.2.21:9443
To set the IP address & subnet mask, use: Local Configuration > Network Interface Configuration
To set the default gateway, use: Local Configuration > Routing
To configure DNS settings, use: Local Configuration > Hostname & DNS

Accessing the Web User Interface (WebUI)

1. Browse to the following URL: https://192.168.2.21:9443/lbadmin/
 (replace with your IP address if it’s been changed)
 * Note the port number → 9443

2. Login to the WebUI:
Username: loadbalancer
Password: loadbalancer

Note: To change the password, use the WebUI menu option: Maintenance > Passwords.

Once logged in, the WebUI will be displayed as shown below:
Clustered Pair Configuration
Loadbalancer.org recommend that load balancer appliances are deployed in pairs for high availability. In this guide a single unit is deployed first, adding a secondary slave unit is covered in section 1 of the Appendix on page 17.
8. Appliance & Server Configuration

Load Balancing Mode
As mentioned on page 5, Virtual Services can be configured in one of four fundamental ways: Layer 4 DR mode, Layer 4 NAT mode, Layer 4 SNAT mode, and Layer 7 SNAT mode. The following sections illustrate how to configure the Virtual Services using the recommended load balancing mode, Layer 7 SNAT mode. If a different load balancing mode is required for a particular VIP then please don't hesitate to contact our support team: support@loadbalancer.org.

Health Check Configuration
As mentioned on page 6, health checks can be configured in several different ways. The sections below all use a TCP 'connect to port' check using the port of the service in question.

Load Balancing Web Nodes (IIS)
(Using Layer 7 SNAT Mode)

Setting up the Virtual Service (VIP)
1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Virtual Services and click Add a New Virtual Service
2. Enter the following details:

 ![Layer 7 - Add a new Virtual Service](image)

 - Enter an appropriate name (Label) for the Virtual Service, e.g. IIS_VIP
 - Set the IP Address field to the required IP address, e.g. 192.168.86.177
 - Set the Ports field to the required port(s), e.g. 443
 - Set Protocol to TCP
 - Click Update
8. Now click **Modify** next to the newly created Virtual Service
9. Ensure **Persistence Mode** is set to **Source IP**
10. Set the Check Type to **Connect to port**
11. Click **Update**

Setting up the Real Servers (RIPs)
1. Using the WebUI, navigate to: *Cluster Configuration > Layer 7 – Real Servers* and click **Add a new Real Server** next to the newly created Virtual Service
2. Enter the following details:

![Layer 7 Add a new Real Server - IIS_VIP](image)

3. Enter an appropriate name (Label) for the first IIS server, e.g. **IIS1**
4. Change the **Real Server IP Address** field to the required IP address, e.g. **192.168.86.50**
5. Click **Update**
6. Now repeat for your remaining web nodes (IIS servers)

Load Balancing Digital Archive

Setting up the Virtual Service (VIP)
1. Using the WebUI, navigate to: *Cluster Configuration > Layer 7 – Virtual Services* and click **Add a New Virtual Service**
2. Enter the following details:
3. Enter an appropriate name (Label) for the Virtual Service, e.g. **DA_VIP**
4. Set the **IP Address** field to the required IP address, e.g. **192.168.86.166**
5. Set the **Ports** field to the required port, e.g. **9001**
6. Set the **Layer 7 Protocol** to **TCP Mode**
7. Click **Update**
8. Now click **Modify** next to the newly created Virtual Service
9. Ensure **Persistence Mode** is set to **None**
10. Set the **Health Checks** to **Connect to port**
11. Scroll down to the **Other** section and enable the **Timeout** check box
12. Set the **Client and Real Server Timeout** to **5m**
13. Click **Update**

Setting up the Real Servers (RIPs)

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created Virtual Service
2. Enter the following details:
3. Enter an appropriate name (Label) for the first Digital Archive server, e.g. DA1
4. Change the Real Server IP Address field to the required IP address, e.g. 192.168.86.50
5. Click Update
6. Now repeat for your remaining Digital Archive server(s)

Reload HAProxy

1. To apply the new settings, reload HAProxy using the WebUI option: Maintenance > Restart Services and clicking Reload HAProxy

Note: If you will be configuring additional layer 7 services, you can reload HAProxy once all layer 7 Virtual Services and Real Servers have been defined.
9. Testing & Verification

Using the System Overview

Verify that all virtual services and their associated real servers are reported as online/healthy (green) as shown below:

![System Overview](image1)

If certain servers are down, i.e. failing their health checks, they will show up as red, as shown below:

![System Overview](image2)

System Logs & Reports

Various system logs & reports can be used to help diagnose problems and help solve appliance issues. Logs can be accessed using the WebUI options: Logs & Reports.

10. Technical Support

If you have any questions regarding the appliance or would like assistance designing your deployment, please don’t hesitate to contact our support team: support@loadbalancer.org.

11. Further Documentation

12. Conclusion

Loadbalancer.org appliances provide a very cost effective and flexible solution for highly available load balanced Inspirata Dynamyx environments.
13. Appendix

1 - Clustered Pair Configuration – Adding a Slave Unit

If you initially configured just the master unit and now need to add a slave - our recommended procedure, please refer to the relevant section below for more details:

Note: A number of settings are not replicated as part of the master/slave pairing process and therefore must be manually configured on the slave appliance. These are listed below:

- Hostname & DNS settings
- Network settings including IP addresses, bonding configuration and VLANs
- Routing configuration including default gateways and static routes
- Date & time settings
- Physical – Advanced Configuration settings including Internet Proxy IP address & port, Firewall table size, SMTP relay and Syslog server
- SNMP settings
- Graphing settings
- Firewall Script & Firewall Lockdown Script settings
- Software updates

Version 7:

Please refer to Chapter 8 – Appliance Clustering for HA in the v7 Administration Manual.

Version 8:

To add a slave node - i.e. create a highly available clustered pair:

1. Deploy a second appliance that will be the slave and configure initial network settings
2. Using the WebUI, navigate to: Cluster Configuration > High-Availability Configuration
3. Specify the IP address and the loadbalancer users password (the default is ‘loadbalancer’) for the slave (peer) appliance as shown above.

4. Click Add new node

5. The pairing process now commences as shown below:

 ![Create a Clustered Pair](image)

6. Once complete, the following will be displayed:

 ![High Availability Configuration - Master](image)

7. To finalize the configuration, restart heartbeat and any other services as prompted in the blue message box at the top of the screen.

 Note: Clicking the Restart Heartbeat button on the master appliance will also automatically restart heartbeat on the slave appliance.

 Note: Please refer to chapter 9 – Appliance Clustering for HA in the Administration Manual for more detailed information on configuring HA with 2 appliances.
2 – Solving the ARP Problem

Layer 4 DR mode works by changing the MAC address of the inbound packets to match the Real Server selected by the load balancing algorithm. To enable DR mode to operate:

- Each Real Server must be configured to accept packets destined for both the VIP address and the Real Servers IP address (RIP). This is because in DR mode the destination address of load balanced packets is the VIP address, whilst for other traffic such as health checks, administration traffic etc. it's the Real Server's own IP address (the RIP). The service/process (e.g. IIS, httpd) must respond to both addresses.

- Each Real Server must be configured so that it does not respond to ARP requests for the VIP address – only the load balancer should do this.

Configuring the Real Servers in this way is referred to as 'Solving the ARP problem'. The steps required depend on the particular OS being used.

For detailed steps on solving the ARP problem for Linux, Windows and various other operating systems, please refer to the Administration Manual and search for “DR Mode Considerations”.
14. Document Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Change</th>
<th>Reason for Change</th>
<th>Changed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0</td>
<td>4 March 2020</td>
<td>Initial document creation</td>
<td></td>
<td>IBG</td>
</tr>
</tbody>
</table>
About Loadbalancer.org

Loadbalancer.org's mission is to ensure that its clients' businesses are never interrupted. The load balancer experts ask the right questions to get to the heart of what matters, bringing a depth of understanding to each deployment. Experience enables Loadbalancer.org engineers to design less complex, unbreakable solutions - and to provide exceptional personalized support.