

Load Balancing Laurel Bridge Compass

Version 1.0

Table of Contents

1. About this Gui	ıide	4
2. Loadbalancer.	r.org Appliances Supported	4
3. Software Vers	sions Supported	4
3.1. Loadbala	ancer.org Appliance	4
	ridge Compass	
	Compass	
_	ng Laurel Bridge Compass	
	Service (VIP) Requirements	
	Concept	
	er Deployment Methods	
7.1. Layer 4 S		
•	aurel Bridge Compass for Load Balancing	
	r.org Appliance – the Basics	
	Appliance	
	etwork Configuration	
	ng the Appliance WebUI	
	ain Menu Options	
	ce Software Update	
	line Update	
	fline Update	
	sed by the Appliance	
9.6. HA Clust	tered Pair Configuration	12
10. Appliance Co	onfiguration for Laurel Bridge Compass	12
10.1. Configu	ure the DICOM Heath Check	12
10.2. VIP 1 - [DICOM-11112	13
10.2.1. Vii	irtual Service (VIP) Configuration	13
10.2.2. D∈	efining the Real Servers (RIPs)	14
10.3. VIP 2 - [DICOM-104	14
10.3.1. Vii	irtual Service (VIP) Configuration	14
	efining the Real Servers (RIPs)	
10.4. VIP 3 - I	DICOM-2762	16
10.4.1. Vir	irtual Service (VIP) Configuration	16
	efining the Real Servers (RIPs)	
10.5. VIP 4 - \		
10.5.1. Vii	irtual Service (VIP) Configuration	
	efining the Real Servers (RIPs)	
10.6. VIP 5 - \	` '	
	irtual Service (VIP) Configuration	
	efining the Real Servers (RIPs)	
	erification	
-	sing the Application	
	System Overview	
_	upport	
	umentation	
	umentation	
	uring HA - Adding a Secondary Appliance	
	on-Replicated Settings	
14. I.Z. CC	onfiguring the HA Clustered Pair	23

14.2. Laurel Bridge System Topology	24
15. Document Revision History	. 25

1. About this Guide

This guide details the steps required to configure a load balanced Laurel Bridge Compass environment utilizing Loadbalancer.org appliances. It covers the configuration of the load balancers and also any Laurel Bridge Compass configuration changes that are required to enable load balancing.

For more information about initial appliance deployment, network configuration and using the Web User Interface (WebUI), please also refer to the Administration Manual.

2. Loadbalancer.org Appliances Supported

All our products can be used with Laurel Bridge Compass. For full specifications of available models please refer to https://www.loadbalancer.org/products/enterprise.

Some features may not be available or fully supported in all cloud platforms due to platform specific limitations. For more details, please refer to the "Main Differences to our Standard (Non-Cloud) Product" section in the appropriate cloud platform Quick Start Guide or check with Loadbalancer.org support.

3. Software Versions Supported

3.1. Loadbalancer.org Appliance

V8.9.1 and later

8 Note

The screenshots used throughout this document aim to track the latest Loadbalancer.org software version. If you're using an older version, or the very latest, the screenshots presented here may not match your WebUI exactly.

3.2. Laurel Bridge Compass

v3.5.0 and later

4. Laurel Bridge Compass

Laurel Bridge Compass Routing Workflow Manager automates the ingestion, distribution, tracking, and access to medical imaging studies across disparate systems and locations, empowering healthcare organizations of all sizes to easily build and manage a scalable imaging workflow layer that enhances interoperability between PACS, VNA, and clinical IT environments. It acts as a router for DICOM images/messages and HL7 version 2.x messages and is able to route from one or more Sources to one or more Destinations.

5. Load Balancing Laurel Bridge Compass

8 Note

It's highly recommended that you have a working Laurel Bridge Compass environment first before implementing the load balancer.

5.1. Virtual Service (VIP) Requirements

To provide load balancing and HA for Laurel Bridge Compass, the following VIPs are required:

Ref.	VIP Name	Use	Mode	VIP Port(s)	Persistence Mode	Health Check
VIP 1	DICOM-11112	DICOM	L4 SNAT	11112	None	External Script
VIP 2	DICOM-104	DICOM	L4 SNAT	104	None	External Script
VIP 3	DICOM-2762	DICOM TLS	L4 SNAT	2762	None	Connect to Port
VIP 4	WEB-10400	HTTP	L4 SNAT	10400	Source IP	Connect to Port
VIP 5	WEB-10401	HTTPS	L4 SNAT	10401	Source IP	Connect to Port

6. Deployment Concept

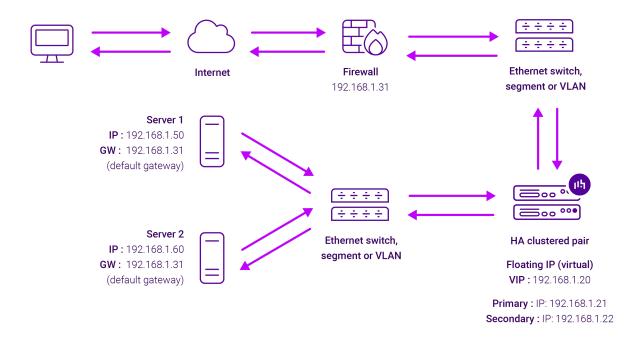
Once the load balancer is deployed, clients connect to the Virtual Services (VIPs) rather than connecting directly to one of the Laurel Bridge Compass routers. These connections are then load balanced across the Laurel Bridge Compass routers to distribute the load according to the load balancing algorithm selected.

VIP = Virtual IP Address

Note For a more detailed system diagram, please refer to Laurel Bridge System Topology.

7. Load Balancer Deployment Methods

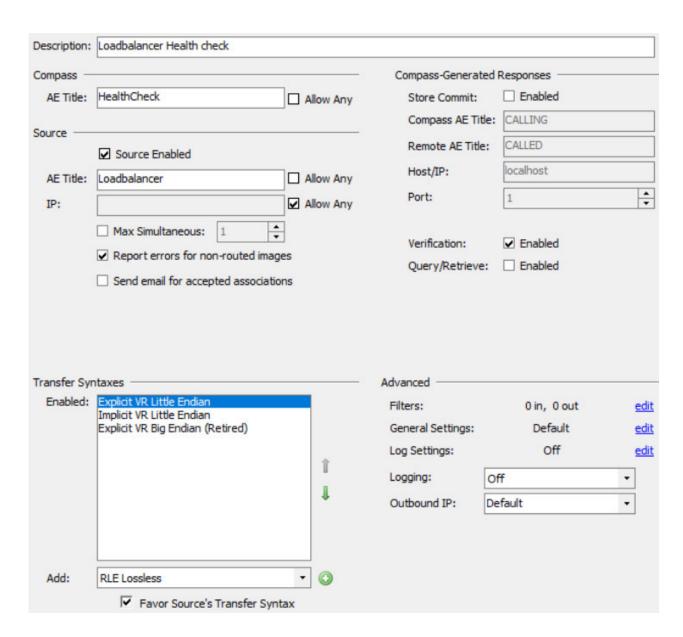
The load balancer can be deployed in 4 fundamental ways: Layer 4 DR mode, Layer 4 NAT mode, Layer 4 SNAT mode, and Layer 7 SNAT mode.


For Laurel bridge Compass, layer 4 SNAT mode is recommended. This mode is described below and is used for the configuration presented in this guide.

7.1. Layer 4 SNAT Mode

Layer 4 SNAT mode is a high performance solution, although not as fast as Layer 4 NAT mode or Layer 4 DR

mode. The image below shows an example network diagram for this mode.



- Real Servers in the cluster can be on any accessible network including across the Internet or WAN.
- Layer 4 SNAT mode is not transparent, an iptables SNAT rule translates the source IP address to be the load balancer rather than the original client IP address.
- Layer 4 SNAT mode can be deployed using either a one-arm or two-arm configuration. For two-arm deployments, **eth1** is typically used for client side connections and **eth0** is used for Real Server connections, although this is not mandatory since any interface can be used for any purpose.
- Requires no mode-specific configuration changes to the load balanced Real Servers.
- Port translation is possible with Layer 4 SNAT mode, e.g. VIP:80 → RIP:8080 is supported.
- You should not use the same RIP:PORT combination for layer 4 SNAT mode VIPs and layer 7 SNAT mode VIPs because the required firewall rules conflict.

8. Configuring Laurel Bridge Compass for Load Balancing

Complete the following on each Laurel Bridge Compass router:

- 1. Navigate to the *Dicom Options > Sources* tab.
- 2. Click Add Source.

- 3. Set the *Description* to **Loadbalancer Health Check**.
- 4. In the *Compass* section set the *AE Title* to **HealthCheck** and uncheck the *Allow Any* checkbox.
- 5. In the **Source** section set the **AE Tile** to **Loadbalancer** and uncheck the **Allow Any** checkbox.

9. Loadbalancer.org Appliance – the Basics

9.1. Virtual Appliance

A fully featured, fully supported 30 day trial is available if you are conducting a PoC (Proof of Concept) deployment. The VA is currently available for VMware, Virtual Box, Hyper-V, KVM, XEN and Nutanix AHV and has been optimized for each Hypervisor. By default, the VA is allocated 2 vCPUs, 4GB of RAM and has a 20GB virtual disk. The Virtual Appliance can be downloaded here.

8 Note

The same download is used for the licensed product, the only difference is that a license key file (supplied by our sales team when the product is purchased) must be applied using the appliance's WebUI.

Please refer to Virtual Appliance Installation and the ReadMe.txt text file included in the VA download for additional information on deploying the VA using the various Hypervisors.

8 Note

The VA has 4 network adapters. For VMware only the first adapter (eth0) is connected by default. For HyperV, KVM, XEN and Nutanix AHV all adapters are disconnected by default. Use the network configuration screen within the Hypervisor to connect the required adapters.

9.2. Initial Network Configuration

After boot up, follow the instructions on the appliance console to configure the management IP address, subnet mask, default gateway, DNS servers and other network and administrative settings.

(!) Important

Be sure to set a secure password for the load balancer, when prompted during the setup routine.

9.3. Accessing the Appliance WebUI

The WebUI is accessed using a web browser. By default, users are authenticated using Apache authentication. Users can also be authenticated against LDAP, LDAPS, Active Directory or Radius - for more information, please refer to External Authentication.

8 Note

There are certain differences when accessing the WebUI for the cloud appliances. For details, please refer to the relevant Quick Start / Configuration Guide.

1. Using a browser, navigate to the following URL:

https://<IP-address-configured-during-the-network-setup-wizard>:9443/lbadmin/

Note

You'll receive a warning about the WebUl's SSL certificate. This is due to the default self signed certificate that is used. If preferred, you can upload your own certificate - for more information, please refer to Appliance Security Features.

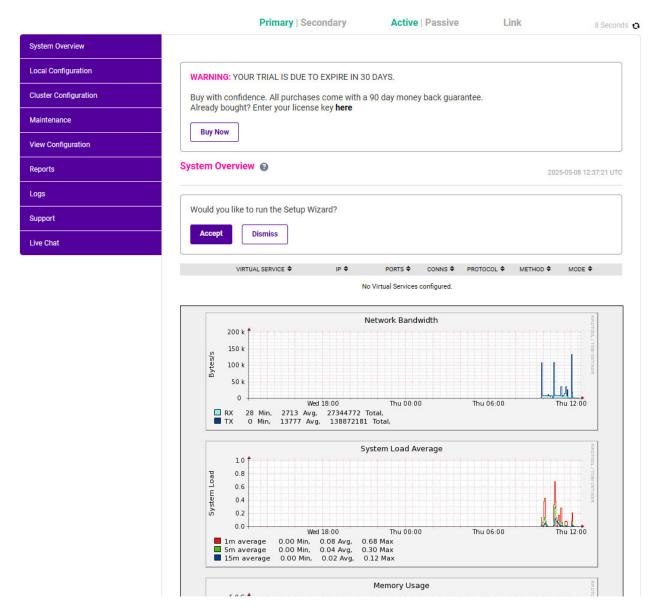
8 Note

If you need to change the port, IP address or protocol that the WebUI listens on, please refer to Service Socket Addresses.

2. Log in to the WebUI using the following credentials:

Username: loadbalancer

Password: <configured-during-network-setup-wizard>


8 Note

To change the password, use the WebUI menu option: *Maintenance > Passwords*.

Once logged in, the WebUI will be displayed as shown below:

LOADBALANCER

3. You'll be asked if you want to run the Setup Wizard. Click **Dismiss** if you're following a guide or want to configure the appliance manually. Click **Accept** to start the Setup Wizard.

Note The Setup Wizard can only be used to configure Layer 7 services.

9.3.1. Main Menu Options

System Overview - Displays a graphical summary of all VIPs, RIPs and key appliance statistics

Local Configuration - Configure local host settings such as IP address, DNS, system time etc.

Cluster Configuration - Configure load balanced services such as VIPs & RIPs

Maintenance - Perform maintenance tasks such as service restarts and creating backups

View Configuration - Display the saved appliance configuration settings

Reports - View various appliance reports & graphs

Logs - View various appliance logs

Support - Create a support download, contact the support team & access useful links

9.4. Appliance Software Update

We recommend that the appliance is kept up to date to ensure that you benefit from the latest bug fixes, security updates and feature improvements. Both online and offline update are supported.

Note

For full details, please refer to Appliance Software Update in the Administration Manual.

Services may need to be restarted/reloaded after the update process completes or in some cases a full appliance restart may be required. We therefore recommend performing the update during a maintenance window.

9.4.1. Online Update

The appliance periodically contacts the Loadbalancer.org update server (**update.loadbalancer.org**) and checks for updates. This is the default behavior and can be disabled if preferred. If an update is found, a notification similar to the example below will be displayed at the top of the WebUI:

Information: Update 8.13.1 is now available for this appliance.

Online Update

Click **Online Update**. A summary of all new features, improvements, bug fixes and security updates included in the update will be displayed. Click **Update** at the bottom of the page to start the update process.

(1) Important Do not navigate away whilst the update is ongoing, this may cause the update to fail.

The update can take several minutes depending on download speed and upgrade version. Once complete, the following message will be displayed:

Information: Update completed successfully. Return to system overview.

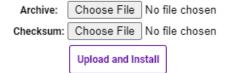
If services need to be reloaded/restarted or the appliance needs a full restart, you'll be prompted accordingly.

9.4.2. Offline Update

If the appliance does not have access to the Internet, offline update can be used.

To check for the latest version, please refer to our product roadmap page available here. To obtain the latest offline update files contact support@loadbalancer.org.

To perform an offline update:


- 1. Using the WebUI, navigate to: Maintenance > Software Update.
- 2. Select Offline Update.
- 3. The following screen will be displayed:

Software Update

Offline Update

The following steps will lead you through offline update.

- 1. Contact Loadbalancer.org support to obtain the offline update archive and checksum.
- 2. Save the archive and checksum to your local machine.
- 3. Select the archive and checksum files in the upload form below.
- 4. Click Upload and Install to begin the update process.

- 4. Select the Archive and Checksum files.
- 5. Click Upload and Install.
- 6. If services need to be reloaded/restarted or the appliance needs a full restart, you'll be prompted accordingly.

9.5. Ports Used by the Appliance

By default, the appliance uses the following TCP & UDP ports:

Protocol	Port	Purpose
TCP	22 *	SSH
TCP & UDP	53 *	DNS / GSLB
TCP & UDP	123	NTP
TCP & UDP	161 *	SNMP
UDP	6694	Heartbeat between Primary & Secondary appliances in HA mode
TCP	7778	HAProxy persistence table replication
TCP	9000 *	Gateway service (Centralized/Portal Management)
TCP	9080 *	WebUI - HTTP (disabled by default)
TCP	9081 *	Nginx fallback page
TCP	9443 *	WebUI - HTTPS
TCP	25565 *	Shuttle service (Centralized/Portal Management)

Note

The ports used for SSH, GSLB, SNMP, the WebUI, the fallback page, the gateway service and the shuttle service can be changed if required. For more information, please refer to Service Socket

9.6. HA Clustered Pair Configuration

Loadbalancer.org recommend that load balancer appliances are deployed in pairs for high availability. In this guide a single unit is deployed first, adding a secondary unit is covered in the section Configuring HA - Adding a Secondary Appliance of the appendix.

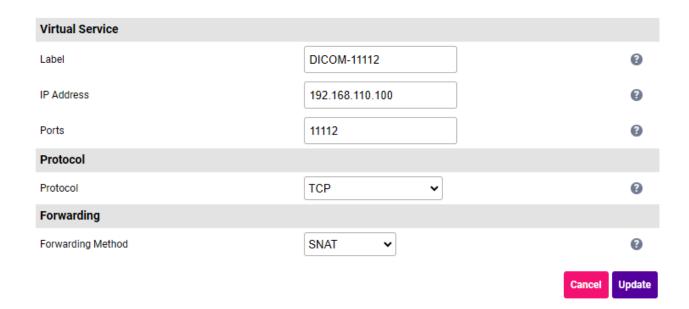
10. Appliance Configuration for Laurel Bridge Compass

10.1. Configure the DICOM Heath Check

- 1. Using the WebUI, navigate to Cluster Configuration > Health Check Scripts and click Add New Health Check.
- 2. Enter the following details:

- Specify an appropriate *Label* for the health check, e.g. **Compass_Dicom_Echo**.
- Set Type to Virtual Service.
- Using the *Template* dropdown select **DICOM-C-ECHO** from the list.
- Change aet and aec in the script to the following values:

as shown below:

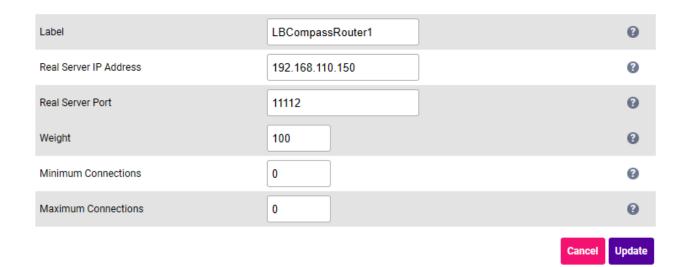

```
#!/bin/bash
    # loadbalancer.org (c) Jan 2017 Andrew Smalley
    # DICOM echoscu healthcheck v0.1
4
5
     # DCMTK - DICOM Toolkit has been used to make this healthcheck possible
     # For source code and copyright please see below
8
     # http://dicom.offis.de/dcmtk.php.en
10
11
12
13
14
15
16
17
     # ftp://dicom.offis.de/pub/dicom/offis/software/dcmtk/dcmtk360/COPYRIGHT
    if [ -z $1 ] && [ -z $2 ] && [ -z $3 ] && [ -z $4 ]; then echo We need input "DICOM-C-ECHO vip vpt rip rpt"
             exit 1;
    fi
18
    vip=$1
     rip=$3
     aet=Loadbalancer
     aec=HealthCheck
     if [[ $4 -eq 0 ]]
              Then
             rpt=$2; else rpt=$4
26
     # Simple DICOM ECHO Check
     /usr/local/bin/echoscu -aet $aet -aec $aec $rip $rpt
29
30
31
```

3. Click **Update** to save the new health check script.

10.2. VIP 1 - DICOM-11112

10.2.1. Virtual Service (VIP) Configuration

 Using the web user interface, navigate to Cluster Configuration > Layer 4 - Virtual Services and click on Add a new Virtual Service.

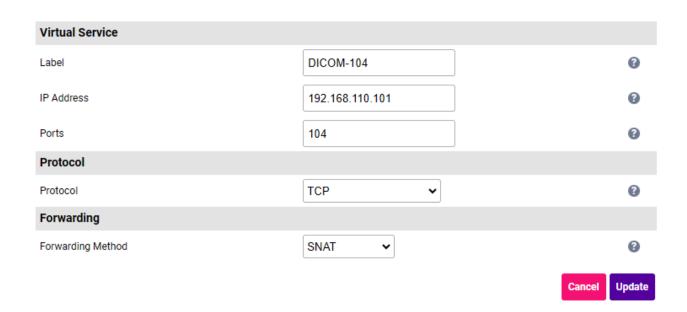


- 2. Specify the Label (name) for the virtual service, e.g. DICOM-11112.
- 3. Set the *IP Address* field to the required IP address, e.g. 192.168.110.100.
- 4. Set the *Ports* field to **11112**.

- 5. Set the *Protocol* to **TCP**.
- 6. Set the Forwarding Method to SNAT.
- 7. Click **Update** to create the Virtual Service.
- 8. Now click **Modify** next to the newly created VIP.
- 9. Scroll to the Connection Distribution Method section.
 - Set the Balance Mode to Weighted Round Robin.
- 10. Scroll to the *Persistence* section.
 - Un-check the *Enable* checkbox to disable persistence.
- 11. Scroll to the *Health Checks* section.
 - Set the Check Type to External Script.
 - Set the External Script dropdown to the health check script created above, e.g. Compass_Dicom_Echo.
- 12. Click Update.

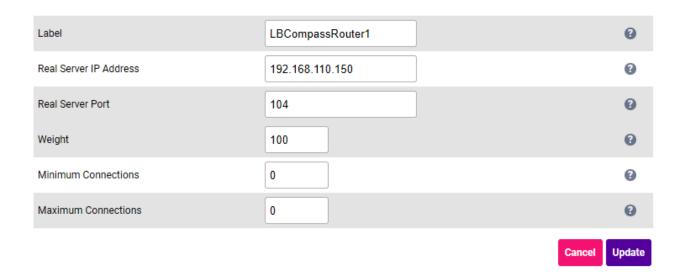
10.2.2. Defining the Real Servers (RIPs)

1. Using the web user interface, navigate to *Cluster Configuration > Layer 4 - Real Servers* and click on **Add a new Real Server** next to the newly created VIP.


- 2. Specify the Label (name) for the Real Server, e.g. LBCompassRouter1.
- 3. Set the Real Server IP Address field to the required IP address, e.g. 192.168.110.150.
- 4. Set the *Real Server Port* field to 11112.
- 5. Click **Update**.
- 6. Repeat these steps to add the remaining Laurel Bridge Compass Routers.

10.3. VIP 2 - DICOM-104

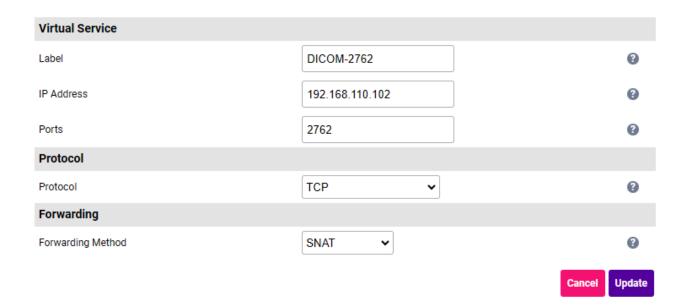
10.3.1. Virtual Service (VIP) Configuration


1. Using the web user interface, navigate to *Cluster Configuration > Layer 4 - Virtual Services* and click on **Add** a new Virtual Service.

- 2. Specify the Label (name) for the virtual service, e.g. DICOM-104.
- 3. Set the *IP Address* field to the required IP address, e.g. 192.168.110.101.
- 4. Set the Ports field to 104.
- 5. Set the *Protocol* to **TCP**.
- 6. Set the Forwarding Method to SNAT.
- 7. Click **Update** to create the Virtual Service.
- 8. Now click **Modify** next to the newly created VIP.
- 9. Scroll to the Connection Distribution Method section.
 - Set the Balance Mode to Weighted Round Robin.
- 10. Scroll to the *Persistence* section.
 - Un-check the *Enable* checkbox to disable persistence.
- 11. Scroll to the Health Checks section.
 - Set the Check Type to External Script.
 - Set the External Script dropdown to the health check script created above, e.g. Compass_Dicom_Echo.
- 12. Click **Update**.

10.3.2. Defining the Real Servers (RIPs)

 Using the web user interface, navigate to Cluster Configuration > Layer 4 - Real Servers and click on Add a new Real Server next to the newly created VIP.

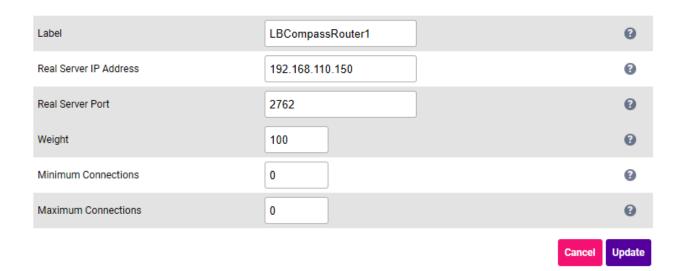


- 2. Specify the *Label* (name) for the Real Server, e.g. **LBCompassRouter1**.
- 3. Set the Real Server IP Address field to the required IP address, e.g. 192.168.110.150.
- 4. Set the Real Server Port field to 104.
- 5. Click Update.
- 6. Repeat these steps to add the remaining Real Servers.

10.4. VIP 3 - DICOM-2762

10.4.1. Virtual Service (VIP) Configuration

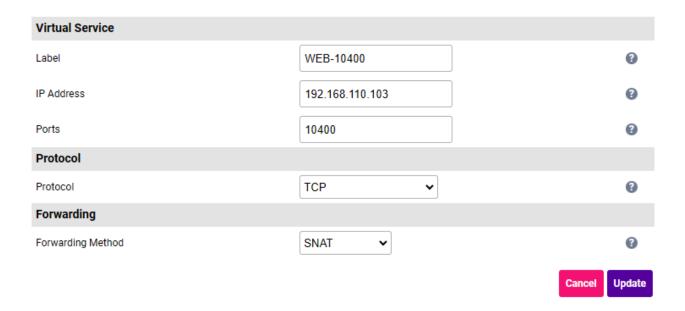
1. Using the web user interface, navigate to *Cluster Configuration > Layer 4 - Virtual Services* and click on **Add** a new Virtual Service.


- 2. Specify the Label (name) for the virtual service, e.g. DICOM-2762.
- 3. Set the IP Address field to the required IP address, e.g. 192.168.110.102.
- 4. Set the Ports field to 2762.

- 5. Set the *Protocol* to **TCP**.
- 6. Set the Forwarding Method to SNAT.
- 7. Click **Update** to create the Virtual Service.
- 8. Now click **Modify** next to the newly created VIP.
- 9. Scroll to the Connection Distribution Method section.
 - Set the Balance Mode to Weighted Round Robin.
- 10. Scroll to the *Persistence* section.
 - Un-check the *Enable* checkbox to disable persistence.
- 11. Click Update.

10.4.2. Defining the Real Servers (RIPs)

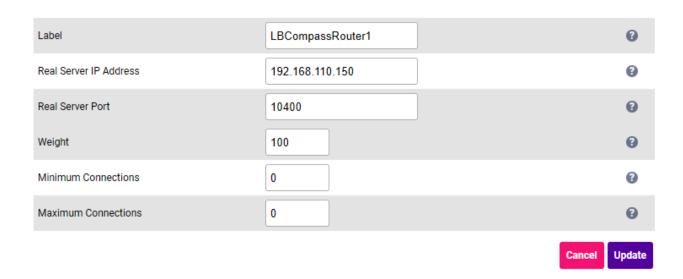
1. Using the web user interface, navigate to *Cluster Configuration > Layer 4 - Real Servers* and click on **Add a new Real Server** next to the newly created VIP.



- 2. Specify the Label (name) for the Real Server, e.g. LBCompassRouter1.
- 3. Set the Real Server IP Address field to the required IP address, e.g. 192.168.110.150.
- 4. Set the Real Server Port field to 2762.
- 5. Click Update.
- 6. Repeat these steps to add the remaining Real Servers.

10.5. VIP 4 - WEB-10400

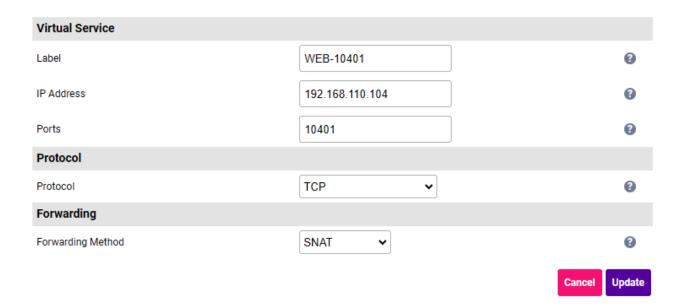
10.5.1. Virtual Service (VIP) Configuration


1. Using the web user interface, navigate to *Cluster Configuration > Layer 4 - Virtual Services* and click on **Add** a new Virtual Service.

- 2. Specify the *Label* (name) for the virtual service, e.g. **WEB-10400**.
- 3. Set the IP Address field to the required IP address, e.g. 192.168.110.103.
- 4. Set the *Ports* field to **10400**.
- 5. Set the *Protocol* to **TCP**.
- 6. Set the Forwarding Method to SNAT.
- 7. Click **Update** to create the Virtual Service.
- 8. Now click **Modify** next to the newly created VIP.
- 9. Scroll to the Connection Distribution Method section.
 - Set the Balance Mode to Weighted Round Robin.
- 10. Click **Update**.

10.5.2. Defining the Real Servers (RIPs)

1. Using the web user interface, navigate to *Cluster Configuration > Layer 4 - Real Servers* and click on **Add a new Real Server** next to the newly created VIP.

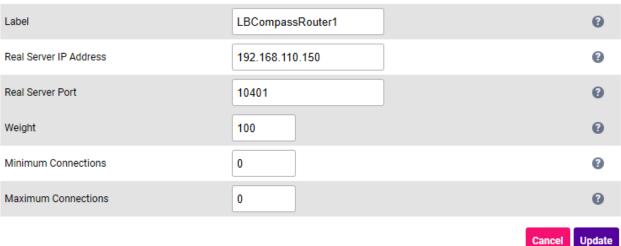


- 2. Specify the *Label* (name) for the Real Server, e.g. **LBCompassRouter1**.
- 3. Set the Real Server IP Address field to the required IP address, e.g. 192.168.110.150.
- 4. Set the Real Server Port field to 10400.
- 5. Click Update.
- 6. Repeat these steps to add the remaining Real Servers.

10.6. VIP 5 - WEB-10401

10.6.1. Virtual Service (VIP) Configuration

1. Using the web user interface, navigate to *Cluster Configuration > Layer 4 - Virtual Services* and click on **Add** a new Virtual Service.



- 2. Specify the Label (name) for the virtual service, e.g. WEB-10401.
- 3. Set the IP Address field to the required IP address, e.g. 192.168.110.104.
- 4. Set the *Ports* field to **10401**.

- 5. Set the *Protocol* to **TCP**.
- 6. Set the Forwarding Method to SNAT.
- 7. Click **Update** to create the Virtual Service.
- 8. Now click **Modify** next to the newly created VIP.
- 9. Scroll to the Connection Distribution Method section.
 - Set the Balance Mode to Weighted Round Robin.
- 10. Click Update.

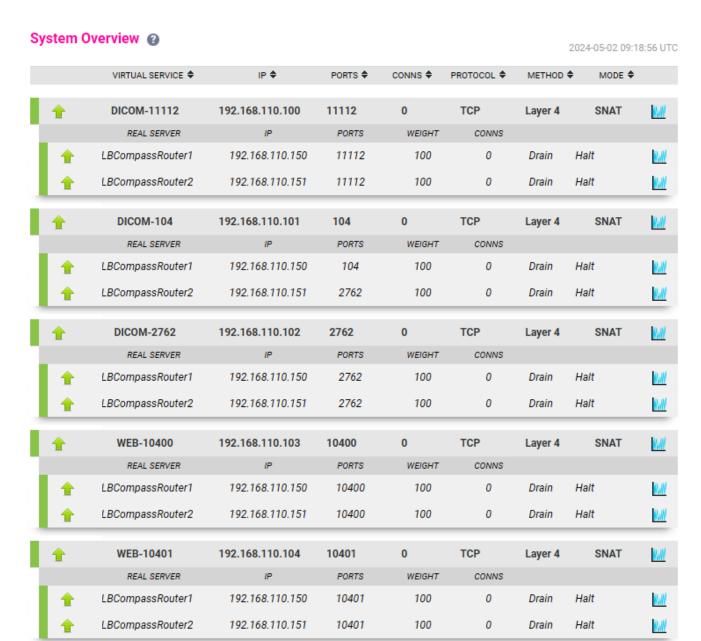
10.6.2. Defining the Real Servers (RIPs)

1. Using the web user interface, navigate to Cluster Configuration > Layer 4 - Real Servers and click on Add a new Real Server next to the newly created VIP.

- 2. Specify the *Label* (name) for the Real Server, e.g. **LBCompassRouter1**.
- 3. Set the Real Server IP Address field to the required IP address, e.g. 192.168.110.150.
- 4. Set the Real Server Port field to 10401.
- 5. Click Update.
- 6. Repeat these steps to add the remaining Real Servers.

11. Testing & Verification

A Note


For additional guidance on diagnosing and resolving any issues you may have, please also refer to Diagnostics & Troubleshooting.

11.1. Accessing the Application

First ensure that any DNS records that are used for access are updated so that the FQDNs resolve to the relevant VIP. Then verify that clients & devices can successfully access the load balanced services.

11.2. Using System Overview

The System Overview can be viewed in the WebUI. It shows a graphical view of all VIPs & RIPs (i.e. the Laurel Bridge Compass Routers) and shows the state/health of each server as well as the state of the cluster as a whole. The example below shows that all Routers are healthy and available to accept connections:

12. Technical Support

For more details about configuring the appliance and assistance with designing your deployment please don't hesitate to contact the support team using the following email address: support@loadbalancer.org.

13. Further Documentation

For additional information, please refer to the Administration Manual.

14. Appendix

14.1. Configuring HA - Adding a Secondary Appliance

Our recommended configuration is to use a clustered HA pair of load balancers to provide a highly available and resilient load balancing solution. We recommend that the Primary appliance is fully configured first, then the Secondary appliance can be added to create an HA pair. Once the HA pair is configured, load balanced services must be configured and modified on the Primary appliance. The Secondary appliance will be automatically kept in sync.

Note

For Enterprise Azure, the HA pair should be configured first. For more information, please refer to the Azure Quick Start/Configuration Guide available in the documentation library

The clustered HA pair uses Heartbeat to determine the state of the other appliance. Should the active device (normally the Primary) suffer a failure, the passive device (normally the Secondary) will take over.

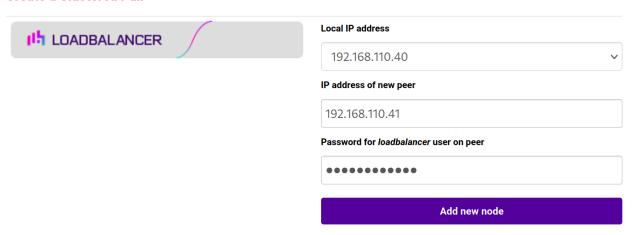
14.1.1. Non-Replicated Settings

A number of settings are not replicated as part of the Primary/Secondary pairing process and therefore must be manually configured on the Secondary appliance. These are listed by WebUI menu option in the table below:

WebUI Main Menu Option	Sub Menu Option	Description
Local Configuration	Hostname & DNS	Hostname and DNS settings
Local Configuration	Network Interface Configuration	Interface IP addresses, bonding configuration and VLANs
Local Configuration	Routing	Default gateways and static routes
Local Configuration	System Date & time	Time and date related settings
Local Configuration	Physical – Advanced Configuration	Various appliance settings
Local Configuration	Portal Management	Portal management settings
Local Configuration	Security	Security settings
Local Configuration	SNMP Configuration	SNMP settings
Local Configuration	Graphing	Graphing settings
Local Configuration	License Key	Appliance licensing
Maintenance	Backup & Restore	Local XML backups
Maintenance	Software Updates	Appliance software updates
Maintenance	Fallback Page	Fallback page configuration
Maintenance	Firewall Script	Firewall (iptables) configuration
Maintenance	Firewall Lockdown Wizard	Appliance management lockdown settings

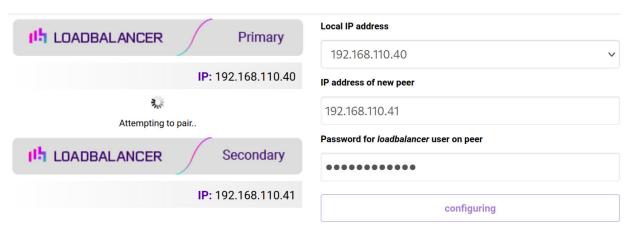
(!) Important

Make sure that where any of the above have been configured on the Primary appliance, they're also configured on the Secondary.


14.1.2. Configuring the HA Clustered Pair

8 Note

If you have already run the firewall lockdown wizard on either appliance, you'll need to ensure that it is temporarily disabled on both appliances whilst performing the pairing process.

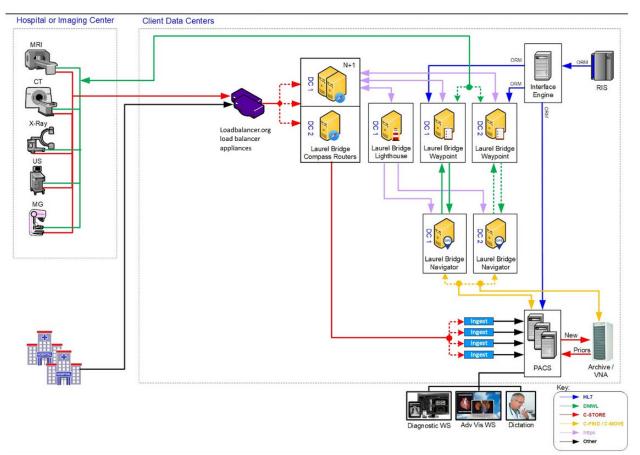

- 1. Deploy a second appliance that will be the Secondary and configure initial network settings.
- 2. Using the WebUI on the Primary appliance, navigate to: *Cluster Configuration > High-Availability Configuration*.

Create a Clustered Pair

- 3. Specify the IP address and the *loadbalancer* user's password for the Secondary (peer) appliance as shown in the example above.
- 4. Click Add new node.
- 5. The pairing process now commences as shown below:

Create a Clustered Pair

6. Once complete, the following will be displayed on the Primary appliance:


High Availability Configuration - primary

- 7. To finalize the configuration, restart heartbeat and any other services as prompted in the "Commit changes" message box at the top of the screen.
- Note Clicking the **Restart Heartbeat** button on the Primary appliance will also automatically restart heartbeat on the Secondary appliance.
 - Note

 For more details on configuring HA with 2 appliances, please refer to Appliance Clustering for HA.
 - Note For details on testing and verifying HA, please refer to Clustered Pair Diagnostics.

14.2. Laurel Bridge System Topology

15. Document Revision History

Version	Date	Change	Reason for Change	Changed By
1.0	24 July 2024	Initial Version		RJC

Visit us: www.loadbalancer.org

Phone us: +44 (0)330 380 1064

Phone us: +1 833 274 2566

Email us: info@loadbalancer.org

Follow us: @loadbalancer.org

About Loadbalancer.org

Loadbalancer.org's mission is to ensure that its clients' businesses are never interrupted. The load balancer experts ask the right questions to get to the heart of what matters, bringing a depth of understanding to each deployment. Experience enables Loadbalancer.org engineers to design less complex, unbreakable solutions and to provide exceptional personalized support.

