Load Balancing NGINX Web Servers with OWASP Top 10 WAF in AWS

Version 1.3.0
1. About this Guide
This document provides a quick reference guide on how to load balance Nginx Web Servers and configure a WAF using the Enterprise AWS Loadbalancer.org Amazon cloud appliance.

- The WAF addresses the OWASP Top 10 vulnerabilities and is very quick and simple to deploy.
- SSL offload is handled by STunnel, HAProxy handles back-end server re-encryption.

2. Software Versions Supported

2.1. Loadbalancer.org Appliance
- v8.7.0 and later

Note: The screenshots used throughout this document aim to track the latest Loadbalancer.org software version. If using an older software version, note that the screenshots presented here may not match the WebUI exactly.

2.2. Nginx Server
- All versions

3. Related Documentation
For additional information, please refer to the Administration Manual and the AWS Quickstart Configuration Guide.

4. Load Balanced Ports / Services

<table>
<thead>
<tr>
<th>Port</th>
<th>Use</th>
<th>Transport Layer Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>HTTP</td>
<td>TCP</td>
</tr>
<tr>
<td>443</td>
<td>HTTPS</td>
<td>TCP</td>
</tr>
</tbody>
</table>

5. VPC Security Group inbound rules
The following inbound rules must be configured in your Security Group:

- For Management: TCP 9443 (Appliance WebUI)
- For access to the load balanced Web Services: TCP 80 (HTTP), TCP 443 (HTTPS)

6. Appliance Configuration Overview

6.1. Operation Mode
The load balancer is configured using layer 7 SNAT mode. This mode does not require any mode specific configuration changes to the load balanced Real Servers.

6.2. SSL Termination / Re-encryption
SSL Termination is configured on the load balancer. This provides a corresponding HTTPS Virtual Service on port 443. Decrypted traffic is then passed to the WAF for inspection and then to the Layer VIP for load balancing and re-encryption to the Nginx Servers.

6.3. Web Server Health-check
A HTTPS negotiate health-check is used to verify that each Nginx Server is available.

6.4. Deployment Concept
The diagram below shows how the system is configured.

7. Deploying & Accessing the Appliance

7.1. Deployment
Deploy the Loadbalancer.org appliance as described in the AWS Quickstart Configuration Guide.

7.2. Accessing the WebUI
Using a browser, navigate to the public IP address or public DNS name on port 9443:

https://<Public IP address>:9443

or

https://<Public DNS name>:9443
You'll receive a warning about the WebUI's certificate. This is due to the default self signed certificate that is used. If preferred, you can upload your own certificate - for more information, please refer to Appliance Security Features.

Log in to the WebUI using the following default credentials:

Username: loadbalancer
Password: <EC2 Instance-ID>

To change the password for the 'loadbalancer' account, use the WebUI option: **Maintenance > Passwords**.

Once logged in, the WebUI is displayed:
WebUI Menu Options

System Overview - Displays a graphical summary of all VIPs, RIPs and key appliance statistics

Local Configuration - Configure local host settings such as IP address, DNS, system time etc.

Cluster Configuration - Configure load balanced services such as VIPs & RIPs

EC2 Configuration - Configure AWS specific settings

Maintenance - Perform maintenance tasks such as service restarts and taking backups

View Configuration - Display the saved appliance configuration settings

Reports - View various appliance reports & graphs

Logs - View various appliance logs

Support - Create a support download, contact the support team & access useful links

Live Chat - Start a Live Chat session with one of our Support Engineers
8. Appliance Configuration

8.1. Configure the Virtual Service (VIP)

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Virtual Services** and click **Add a New Virtual Service**.

2. Enter the following details:

<table>
<thead>
<tr>
<th>Virtual Service</th>
<th>[Advanced +]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>Web-Cluster</td>
</tr>
<tr>
<td>IP Address</td>
<td>10.0.0.125</td>
</tr>
<tr>
<td>Ports</td>
<td>80</td>
</tr>
<tr>
<td>Protocol</td>
<td>HTTP Mode</td>
</tr>
</tbody>
</table>

3. Enter the required **Label** (name) for the VIP, e.g. **Web-Cluster**.

4. Set the **Virtual Service IP Address** field to an appropriate value, e.g. **10.0.0.125**.

5. Set the **Virtual Service Ports** field to the required port, e.g. **443**.

6. Leave **Layer 7 Protocol** set to **HTTP Mode**.

7. Click **Update**.

8. Now click **Modify** next to the newly created VIP.

9. Scroll to the **Health Checks** section.
 - Set **Health Checks** to **Negotiate HTTPS (GET)**.
 - Leave **Request to Send** blank.

 - **Note**: Leaving **Request to Send** blank will send the health check request to the Web Server’s root directory. Change this if needed.

 - Leave **Response Expected** blank.

 - **Note**: Leaving **Response Expected** blank will mean that all HTTP 2xx (usually HTTP 200) and HTTP 3xx responses will be considered as valid and the server will be marked as up.

10. Click **Update**.
8.2. Define the Real (Nginx) Servers

1. Using the WebUI, navigate to: *Cluster Configuration > Layer 7 – Real Servers* and click *Add a new Real Server* next to the newly created VIP.

2. Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>Web1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>10.0.0.150</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>443</td>
</tr>
<tr>
<td>Re-Encrypt to Backend</td>
<td>✓</td>
</tr>
<tr>
<td>Enable Redirect</td>
<td>✓</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
</tbody>
</table>

3. Enter an appropriate label for the Real Server, e.g. **Web1**.

4. Set the *Real Server IP Address* field to the required address, e.g. **10.0.0.150**.

5. Set the *Real Server Port* to **443**.

7. Click *Update*.

8. Repeat the above steps to add your other Nginx Server(s).

8.3. Upload the Public SSL Certificate

1. Using the WebUI, navigate to: *Cluster Configuration > SSL Certificate* and click *Add a New SSL Certificate*.

2. Select *Upload prepared PEM/PFX file*.

3. Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>Cert1</th>
</tr>
</thead>
<tbody>
<tr>
<td>File to upload</td>
<td>Choose File Cert1.pfx</td>
</tr>
<tr>
<td>PFX File Password</td>
<td>**********</td>
</tr>
</tbody>
</table>

© Copyright Loadbalancer.org • Documentation • Load Balancing NGINX Web Servers with OWASP Top 10 WAF in AWS
4. Specify and Label (name) for the certificate, e.g. Cert1.

5. Click Choose File and browse to and select the relevant PFX or PEM file.

6. Enter the PFX file Password.

7. Click Upload Certificate.

8.4. Configure the STunnel Virtual Service (VIP)
STunnel is used to terminate SSL on the load balancer.

1. Using the WebUI, navigate to: Cluster Configuration > SSL Termination and click Add a New Virtual Service.

2. Enter the following details:

 ![Virtual Service Configuration](image)

 3. Using the Associated Virtual Service drop-down, select the Virtual Service created above, e.g. Web-Cluster.

 ![Note](image)

 Once the VIP is selected, the Label field will be auto-populated with SSL-Web-Cluster. This can be changed if preferred.

4. Ensure that the Virtual Service Port is set to 443.

6. Select the SSL Certificate uploaded previously.

7. Click Update.

8.5. Configure the WAF

1. Using the WebUI, navigate to: Cluster Configuration > WAF – Gateway and click Add a New WAF Gateway.

2. Enter the following details:
3. Select the VIP created previously, e.g. **Web-Cluster**.

Note Once the VIP is selected, the **WAF Label** field will be auto-populated with **WAF-Web-Cluster**. This can be changed if preferred.

4. Click **Update**.

Note By default the WAF setting **Rule Engine Traffic Blocking** is disabled when the WAF is created. While disabled this option ensures that the ModSecurity Rule Engine logs any critical errors but does not block any requests. You should leave the WAF in this mode until you are confident that the error logs are not showing false positives. Once you are confident it can be enabled and the WAF will start blocking any malicious requests with a 403 Forbidden response. To enable this setting, click **Modify** next to the WAF gateway, check the **Rule Engine Traffic Blocking** option and click **Update**.

8.6. Apply the New Settings

To apply the new settings, HAProxy, STunnel and the WAF must be reloaded. This can be done using the button in the "Commit changes" box at the top of the screen or by using the **Restart Services** menu option:

1. Using the WebUI, navigate to: **Maintenance > Restart Services**.
2. Click **Reload HAProxy**.
3. Click **Reload STunnel**.
4. Click **Reload WAF**.

8.7. Associate the VIP with an Elastic IP Address

1. Using the EC2 Management Console, allocate a new Elastic IP address.
2. Now associate this address with the VIP, in this case **10.0.0.150**.

9. Testing

The load balanced Nginx Web Servers should now be accessible on ports 80 & 443 using the EIP address or corresponding public DNS name.

10. Logging Client Source IP Addresses in Nginx
Nginx can be configured to store the value of X-Forwarded-For headers for incoming web traffic. These headers are added by default by the load balancer. This allows upstream servers and network devices to see the real source IP addresses of clients, even though the load balancer is acting as a proxy.

For full details on how to configure Nginx for this, see our blog post:

https://www.loadbalancer.org/blog/nginx-and-x-forwarded-for-header/

11. Loadbalancer.org Technical Support

If you have any questions regarding the appliance or would like assistance designing your deployment, please don't hesitate to contact our support team: support@loadbalancer.org.
12. Document Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Change</th>
<th>Reason for Change</th>
<th>Changed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.0</td>
<td>4 November 2019</td>
<td>Styling and layout</td>
<td>General styling updates</td>
<td>AH</td>
</tr>
<tr>
<td>1.1.1</td>
<td>27 August 2020</td>
<td>New title page</td>
<td>Branding update</td>
<td>AH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Canadian contact details</td>
<td>Change to Canadian contact details</td>
<td>AH</td>
</tr>
<tr>
<td>1.2.0</td>
<td>1 September 2022</td>
<td>Converted the document to AsciiDoc</td>
<td>Move to new documentation system</td>
<td>AH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated links and instructions where necessary</td>
<td>Required updates</td>
<td>AH</td>
</tr>
<tr>
<td>1.2.1</td>
<td>28 September 2022</td>
<td>Updated layer 7 VIP and RIP creation screenshots</td>
<td>Reflect changes in the web user interface</td>
<td>AH</td>
</tr>
<tr>
<td>1.2.2</td>
<td>5 January 2023</td>
<td>Added one level of section numbering</td>
<td>Housekeeping across all documentation</td>
<td>AH</td>
</tr>
<tr>
<td>1.2.3</td>
<td>2 February 2023</td>
<td>Updated screenshots</td>
<td>Branding update</td>
<td>AH</td>
</tr>
<tr>
<td>1.2.4</td>
<td>23 March 2023</td>
<td>Improved document structure</td>
<td>Document standardization</td>
<td>RJC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated various configuration steps</td>
<td>Product feature updates</td>
<td>RJC</td>
</tr>
<tr>
<td>1.3.0</td>
<td>24 March 2023</td>
<td>New document theme</td>
<td>Branding update</td>
<td>AH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified diagram colours</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
About Loadbalancer.org

Loadbalancer.org’s mission is to ensure that its clients’ businesses are never interrupted. The load balancer experts ask the right questions to get to the heart of what matters, bringing a depth of understanding to each deployment. Experience enables Loadbalancer.org engineers to design less complex, unbreakable solutions - and to provide exceptional personalized support.