Load Balancing Microsoft AD FS

Version 1.5.0
Table of Contents

1. About this Guide ... 4
2. Loadbalancer.org Appliances Supported 4
3. Loadbalancer.org Software Versions Supported 4
4. Microsoft Windows Versions Supported 4
5. Active Directory Federation Services (AD FS) 4
 - Introduction .. 4
 - AD FS SSO Scenarios .. 4
 - Web SSO .. 4
 - Federated Web SSO .. 5
 - AD FS Versions .. 5
 - Role Services .. 5
 - How AD FS Works ... 6
 - Internal Clients ... 6
 - External Clients .. 7
 - Other Useful References .. 7
6. Load Balancing AD FS .. 8
 - Basic Concepts .. 8
 - Load Balanced Ports & Services ... 8
 - Persistence (Server Affinity) Requirements & Options 8
 - Server Health checking .. 8
 - SSL Termination ... 9
 - Load Balancer Deployment .. 9
 - Load Balancer Deployment Mode 9
7. Loadbalancer.org Appliance – the Basics 9
 - Virtual Appliance .. 10
 - Initial Network Configuration .. 10
 - Accessing the WebUI ... 10
 - Main Menu Options .. 11
 - HA Clustered Pair Configuration 12
8. Server & Appliance Configuration - AD FS 2.0 12
 - Federation Servers ... 12
 - Federation Server Installation & Configuration 12
 - Load Balancer Configuration 12
 - DNS Configuration ... 13
 - Testing & Verification .. 14
 - Federation Proxy Servers ... 14
 - Proxy Server Installation & Configuration 14
 - Load Balancer Configuration 14
 - DNS Configuration ... 15
 - Testing & Verification .. 16
9. Server & Appliance Configuration - AD FS 3.0 / 4.0 / 5.0 16
 - Federation Servers ... 16
 - Federation Server Installation & Configuration 16
 - Load Balancer Configuration 18
 - DNS Configuration ... 21
 - Testing & Verification .. 21
 - Web Application Proxy (WAP) Servers 22
 - WAP Server Installation & Configuration 22
 - Load Balancer Configuration 23
1. About this Guide

This guide details the steps required to configure a load balanced Microsoft AD FS environment utilizing Loadbalancer.org appliances. It covers the configuration of the load balancers and also any Microsoft AD FS configuration changes that are required to enable load balancing.

For more information about initial appliance deployment, network configuration and using the Web User Interface (WebUI), please also refer to the Administration Manual.

2. Loadbalancer.org Appliances Supported

All our products can be used with AD FS. For full specifications of available models please refer to https://www.loadbalancer.org/products.

Some features may not be supported in all cloud platforms due to platform specific limitations, please check with Loadbalancer.org support for further details.

3. Loadbalancer.org Software Versions Supported
 • v8.3.8 and later

4. Microsoft Windows Versions Supported
 • Windows 2008 R2 and later (AD FS v2.0+)

5. Active Directory Federation Services (AD FS)

Introduction

AD FS provides simplified, secured identity federation and Web single sign-on (SSO) capabilities for end users who need access to applications within an AD FS secured enterprise, in federation partner organizations, or in the cloud.

AD FS is a Web Service that authenticates users against Active Directory and provides them access to claims-aware applications. These applications are typically used through the client’s web browser. The applications can be on-premises, off-premises, or even hosted by other companies.

AD FS SSO Scenarios

Web SSO
This is the most common scenario. Here users login to web applications, either off-premises or on-premises, from their browsers using their Active Directory credentials. Examples of such applications include:

• salesforce.com
• servicenow.com
• SharePoint Online (SPO)
• Office 365
• etc.
Federated Web SSO

The following scenarios are examples of Federated SSO. These scenarios aren’t as common but they illustrate how AD FS can be used to collaborate with a partner, another company, or another AD forest:

1. You want users from another organization to login to your web applications using their own identity credentials.
2. You want to login to another organization’s web applications using your own Active Directory credentials.
3. You want users from another internal Active Directory forest to login to your web applications in your Active Directory using their own AD credentials without a domain and/or forest trust.
4. You want to use your production Active Directory credentials to login to test web applications located in your test Active Directory environment without a domain and/or forest trust.
5. You want users to be able to login to your web applications using their Google, Facebook, Live ID, Yahoo, etc. credentials.

AD FS Versions

The following table lists the various versions of AD FS and in which Windows version they were initially released:

<table>
<thead>
<tr>
<th>AD FS Version</th>
<th>Released in Windows Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1.0</td>
<td>2003 R2</td>
</tr>
<tr>
<td>v1.1</td>
<td>2008</td>
</tr>
<tr>
<td>v2.0</td>
<td>2008 R2</td>
</tr>
<tr>
<td>v2.1</td>
<td>2012</td>
</tr>
<tr>
<td>v3.0</td>
<td>2012 R2</td>
</tr>
<tr>
<td>v4.0</td>
<td>2016</td>
</tr>
<tr>
<td>V5.0</td>
<td>2019</td>
</tr>
</tbody>
</table>

Role Services

The following role services can be deployed as part of the AD FS role:

<table>
<thead>
<tr>
<th>Role Service</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federation Server</td>
<td>Acts as an identity provider - Authenticates users to provide security tokens to applications that trust AD FS</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Acts as a federation provider - Consumes tokens from other identity providers and then provides security tokens to applications that trust AD FS</td>
</tr>
<tr>
<td>Role Service</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Federation Server Proxy / Web Application Proxy | The Federation Service Proxy functions as an intermediary proxy service between an Internet client and a Federation Server that is located behind a firewall on a corporate network.

Note: In Windows 2012 R2 and later, the dedicated Proxy role service has been removed. Instead, the proxy is based on WAP (Web Application Proxy). |

How AD FS Works

The following sections explain how AD FS authenticates internal LAN based users and external Internet based users.

A Microsoft Dynamics CRM example is used with AD FS v2.0, although the general flow is the same for other applications and different AD FS versions.

Note For a reference of key AD FS concepts, please refer to [this URL](#).

Internal Clients

The authentication process for internal clients is shown below:

1. The client sends a request to access the Microsoft Dynamics CRM website.
2. IIS refuses the connection with an HTTP 302 error message and redirects the user to the trusted claims provider (also known as the STS) for Microsoft Dynamics CRM (AD FS v2.0).
3. The client sends a request for a security token to AD FS v2.0.
4. AD FS 2.0 returns an HTTP 401.1 error, indicating that the client must supply a Kerberos ticket.
5. The client sends a Kerberos authentication request to Active Directory.
6. Active Directory validates the client and sends a Kerberos ticket.
7. AD FS 2.0 issues the Kerberos ticket.
8. The client sends a request for content.
9. AD FS 2.0 issues a security token.
10. The client sends a request for content.
7. The client sends a request for a security token to AD FS v2.0 and includes the Kerberos ticket.

Note: If the client already has a valid Kerberos ticket on the network, this ticket is sent to AD FS v2.0 in step 3 and steps 4 through 7 are skipped.

8. AD FS v2.0 provides a security token containing claims for access to Microsoft Dynamics CRM data.

9. The client sends the security token containing claims obtained from AD FS v2.0 to the Microsoft Dynamics CRM server.

10. The Microsoft Dynamics CRM server decrypts and validates the security token and presents the user with the requested information.

Note: For more information, please refer to this URL.

External Clients
The flow for external access is largely unchanged from the flow described above for internal access. The major difference is that user authentication does not include a Kerberos ticket.

The authentication process for external clients is shown below:

Note: For more information, please refer to this URL.

When an AD FS proxy is used, the client is redirected to the proxy which then connects to the internal AD FS server where authentication occurs. For more details of AD FS proxy, please refer to this URL.

Other Useful References
How To Install AD FS 2016 For Office 365:

Setting up AD FS and Enabling Single Sign-On to Office 365:
6. Load Balancing AD FS

Note
It's highly recommended that you have a working AD FS environment first before implementing the load balancer. The initial environment would normally include a single Federation Server and a single Proxy Server. If the Federation Service Name was set to \texttt{adfs.lbtestdom.com} at initial deployment, additional Federation Servers can be added to the same farm, then DNS entries must be changed so that \texttt{adfs.lbtestdom.com} points to the VIP on the load balancer rather than the primary Federation Server.

Basic Concepts
To provide resilience and high availability for your AD FS infrastructure, multiple Federation Servers and multiple Federation Proxy Servers (WAPs in Windows 2012 & later) must be deployed with a load balancer. This helps ensure that users can be authenticated and obtain access to the required systems and applications by constantly checking the health of the AD FS servers and only forwarding client authentication requests to those that are functional.

Load Balanced Ports & Services
The following table shows the ports that are load balanced:

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocols</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>443</td>
<td>TCP/HTTPS</td>
<td>AD FS communications</td>
</tr>
<tr>
<td>49443</td>
<td>TCP</td>
<td>Used for certificate authentication in AD FS v3.0 and later</td>
</tr>
</tbody>
</table>

Persistence (Server Affinity) Requirements & Options
As mentioned here, Microsoft do not recommend using source IP persistence (affinity) for AD FS. However, under certain complex scenarios persistence may be required for the Federation Server VIP.

Note
Source IP persistence can easily be enabled by modifying the VIP, setting \texttt{Persistence Mode} to Source IP, clicking \texttt{Update} and reloading/restarting HAProxy.

Server Health checking
By default the load balancer uses a TCP port connect to verify the health of back-end servers. For AD FS we recommend that more comprehensive checks are used.

For AD FS v2.0, the load balancer is configured to look for specific content on the AD FS login page: \texttt{https://<server IP address>/adfs/ls/idpinitiatedsignon.aspx}

For AD FS v3.0 prior to update rollup KB2975719, the load balancer is configured to use a script to carry out an SNI based health check that looks for specific content on the AD FS login page: \texttt{https://<server IP address>/adfs/ls/idpinitiatedsignon.htm}

For AD FS v3.0 with update rollup KB2975719 and later, the load balancer is configured to look for a HTTP 200 OK
response when the built-in probe URL is read: http://<server IP address>/adfs/probe

SSL Termination
Microsoft state that SSL termination between the Proxy Servers and the Federation Servers is not supported and that SSL Termination between Client and Proxy is only supported under certain situations. For the configurations presented in this guide, SSL is terminated on the Federation & WAP servers and not the load balancer.

Load Balancer Deployment
The following diagram shows a typical load balanced AD FS deployment.

Load balancers can be deployed as single units or as a clustered pair. Loadbalancer.org always recommend deploying clustered pairs for HA and resilience.

The Federation Proxy servers / WAP servers must be able to access the internal AD FS VIP on port 443 via the "Federation Service Name" specified during installation / configuration. Make sure that firewalls, routing and DNS are configured to allow this. In this guide, the Federation Service Name used is adfs.lbtestdom.com, so an entry for this is added to the local hosts file on each Federation Proxy Server / WAP server which resolves to the AD FS VIP on the internal LAN.

Load Balancer Deployment Mode
Layer 7 SNAT mode (HAProxy) is recommended for AD FS and is used for the configurations presented in this guide. This mode offers good performance and is simple to configure since it requires no configuration changes to the AD FS servers.

Layer 4 DR mode, NAT mode and SNAT mode can also be used if preferred. For DR mode you’ll need to solve the ARP problem on each AD FS server - for more information please refer to DR Mode Considerations. For NAT mode the default gateway of the AD FS servers must be the load balancer.

7. Loadbalancer.org Appliance – the Basics
Virtual Appliance

A fully featured, fully supported 30 day trial is available if you are conducting a PoC (Proof of Concept) deployment. The VA is currently available for VMware, Virtual Box, Hyper-V, KVM, XEN and Nutanix AHV and has been optimized for each Hypervisor. By default, the VA is allocated 2 vCPUs, 4GB of RAM and has a 20GB virtual disk. The Virtual Appliance can be downloaded [here](#).

Note
The same download is used for the licensed product, the only difference is that a license key file (supplied by our sales team when the product is purchased) must be applied using the appliance’s WebUI.

Note
Please refer to [The Virtual Appliance - Hypervisor Deployment](#) and the ReadMe.txt text file included in the VA download for more detailed information on deploying the VA using various Hypervisors.

Note
For the VA, 4 NICs are included but only eth0 is connected by default at power up. If the other NICs are required, these should be connected using the network configuration screen within the Hypervisor.

Initial Network Configuration

After boot up, follow the instructions on the console to configure the IP address, subnet mask, default gateway, DNS and other network settings.

Important
Be sure to set a secure password for the load balancer, when prompted during the setup routine.

Accessing the WebUI

The WebUI is accessed using a web browser. By default, user authentication is based on local Apache .htaccess files. User administration tasks such as adding users and changing passwords can be performed using the WebUI menu option: *Maintenance > Passwords*.

Note
A number of compatibility issues have been found with various versions of Internet Explorer and Edge. The WebUI has been tested and verified using both Chrome & Firefox.

Note
If required, users can also be authenticated against LDAP, LDAPS, Active Directory or Radius. For more information please refer to [External Authentication](#).

1. Using a browser, access the WebUI using the following URL:

2. Log in to the WebUI:

 Username: loadbalancer
 Password: <configured-during-network-setup-wizard>
To change the password, use the WebUI menu option: Maintenance > Passwords.

Once logged in, the WebUI will be displayed as shown below:

Note: The WebUI for the VA is shown, the hardware and cloud appliances are very similar. The yellow licensing related message is platform & model dependent.

3. You’ll be asked if you want to run the Setup Wizard. If you click Accept the Layer 7 Virtual Service configuration wizard will start. If you want to configure the appliance manually, simple click Dismiss.

Main Menu Options
System Overview - Displays a graphical summary of all VIPs, RIPS and key appliance statistics
Local Configuration - Configure local host settings such as IP address, DNS, system time etc.
Cluster Configuration - Configure load balanced services such as VIPs & RIPv
Maintenance - Perform maintenance tasks such as service restarts and taking backups
View Configuration - Display the saved appliance configuration settings
Reports - View various appliance reports & graphs
Logs - View various appliance logs
Support - Create a support download, contact the support team & access useful links
Live Chat - Start a live chat session with one of our Support Engineers

HA Clustered Pair Configuration
Loadbalancer.org recommend that load balancer appliances are deployed in pairs for high availability. In this guide a single unit is deployed first, adding a secondary unit is covered in Configuring HA - Adding a Secondary Appliance.

8. Server & Appliance Configuration - AD FS 2.0

Federation Servers

Federation Server Installation & Configuration

- AD FS v2.0 for Windows 2008 R2 must be downloaded and installed manually on each AD FS server. If installed using Server Manager/Add Roles, v1.0 will be installed, NOT v2.0.

- AD FS update rollup 3 is available here

- For information on configuring the Federation Servers please refer to this URL

Load Balancer Configuration

Setting up the Virtual Service (VIP)

1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Virtual Services and click Add a New Virtual Service.

2. Enter the following details:

 ![Virtual Service Configuration](image)

 - Enter an appropriate name (Label) for the Virtual Service, e.g. ADFS-Cluster.
 - Set the Virtual Service IP address field to the required IP address, e.g. 192.168.2.100.
 - Set the Virtual Service Ports field to 443.
 - Set Layer 7 Protocol to TCP Mode.
 - Click Update.
8. Now click **Modify** next to the newly created Virtual Service.

9. Change **Persistence Mode** to **None**.

10. In the **Health Checks** section, click **Advanced** to show more options.

11. Change **Health Checks** to **Negotiate HTTPS (GET)**.

12. Set **Check Port** to **443**.

13. Set **Request to Send** to **adfs/ls/idpinitiatedsignon.aspx**.

14. Set **Response Expected** to **Sign-In**.

15. In the **Other** section, click **Advanced** to show more options.

16. Enable (check) the **Timeout** checkbox, set both **Client Timeout** and **Real Server Timeout** to **5m**.

17. Click **Update**.

Setting up the Real Servers (RIPs)

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created Virtual Service.

2. Enter the following details:

 ![Real Server Configuration](image)

 - **Label**: **ADFS1**
 - **Real Server IP Address**: **192.168.2.110**
 - **Real Server Port**: **443**
 - **Re-Encrypt to Backend**: **on**
 - **Weight**: **100**

3. Enter an appropriate name (Label) for the first AD FS server, e.g. **ADFS1**.

4. Change the **Real Server IP Address** field to the required IP address, e.g. **192.168.2.110**.

5. Set the **Real Server Port** field to **443**.

6. Click **Update**.

7. Now repeat for your remaining Federation server(s).

Applying the new Layer 7 Settings

1. Once the configuration is complete, use the **Restart/Reload HAProxy** button at the top of the screen to commit the changes, or use the WebUI option: **Maintenance > Restart Services**.

DNS Configuration

Create a suitable DNS entry for the load balanced Federation Servers, i.e. for the VIP on the load balancer.

e.g. adfs.lbtestdom.com
Testing & Verification

Note: For additional general guidance please also refer to Testing Load Balanced Services.

The load balanced AD FS servers should now be accessible using the DNS entry for the VIP. Connect to the login page from a browser.

e.g. https://adfs.lbtestdom.com/adfs/ls/idpinitiatedsignon.aspx

Federation Proxy Servers

Proxy Server Installation & Configuration

- AD FS v2.0 for Windows 2008 R2 must be downloaded and installed manually on each AD FS Proxy Server. If installed using Server Manager/Add Roles, v1.0 will be installed, NOT v2.0.

- AD FS update rollup 3 is available here.

- When running the wizard, the Federation Service Name should be the load balanced VIP of the Federation Servers.

- For information on configuring the Proxy Servers please refer to this URL.

- The Federation Proxy servers must be able to access the internal AD FS VIP on port 443 via the "Federation Service Name" specified during installation / configuration. Make sure that firewalls, routing and DNS are configured to allow this. In this guide, the Federation Service Name used is adfs.lbtestdom.com, so an entry for this is added to the local hosts file on each Federation Proxy Server which resolves to the AD FS VIP on the internal LAN.

Load Balancer Configuration

Setting up the Virtual Service (VIP)

1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Virtual Services and click Add a New Virtual Service.

2. Enter the following details:

 ![Virtual Service Configuration](image)

 - Label: ADFS-Proxy-Cluster
 - IP Address: 192.168.2.100
 - Ports: 443
 - Layer 7 Protocol: TCP Mode

3. Enter an appropriate name (Label) for the Virtual Service, e.g. ADFS-Proxy-Cluster.

4. Set the Virtual Service IP address field to the required IP address, e.g. 192.168.2.100.

5. Set the Virtual Service Ports field to 443.

6. Set the Layer 7 Protocol to TCP Mode.
7. Click **Update**.

8. Now click **Modify** next to the newly created Virtual Service.

9. Change **Persistence Mode** to **None**.

10. In the **Health Checks** section, click **Advanced** to show more options.

11. Change **Health Checks** to **Negotiate HTTPS (GET)**.

12. Set **Check Port** to **443**.

13. Set **Request to Send** to **adfs/ls/idpinitiatedsignon.aspx**.

14. Set **Response Expected** to **Sign-In**.

15. In the **Other** section, click **Advanced** to show more options.

16. Enable (check) the **Timeout** checkbox, set both **Client Timeout** and **Real Server Timeout** to **5m**.

17. Click **Update**.

Setting up the Real Servers (RIPs)

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created Virtual Service.

2. Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>ADFS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>192.168.2.110</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>443</td>
</tr>
<tr>
<td>Re-Encrypt to Backend</td>
<td>No</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
</tbody>
</table>

3. Enter an appropriate name (Label) for the first AD FS server, e.g. **ADFS1**.

4. Change the **Real Server IP Address** field to the required IP address, e.g. **192.168.2.110**.

5. Set the **Real Server Port** field to **443**.

6. Click **Update**.

7. Now repeat for your remaining Federation Proxy server(s).

Applying the new Layer 7 Settings

1. Once the configuration is complete, use the **Restart/Reload HAProxy** button at the top of the screen to commit the changes, or use the WebUI option: **Maintenance > Restart Services**.

DNS Configuration

Create a suitable DNS entry for the load balanced Proxy Servers, i.e. for the VIP on the load balancer.

Example: **adfs.robstest.com**
Testing & Verification

Note For additional general guidance please also refer to Testing Load Balanced Services.

The load balanced AD FS servers should now be accessible using the DNS entry for the VIP. Connect to the login page from a browser.

e.g. https://adfs.robtest.com/adfs/ls/idpinitiatedsignon.aspx

9. Server & Appliance Configuration - AD FS 3.0 / 4.0 / 5.0

Federation Servers

Federation Server Installation & Configuration
The key points of the installation process are covered below. For more details, please also refer to the following Microsoft URL:

* How To Install AD FS 2016 For Office 365

STEP 1 – Prepare AD FS Certificates
In this guide an Internal CA was used to issue the certificate. As mentioned here the Private Key must be exportable so that the certificate and private key can be exported from the first Federation Server, and used on other Federation Servers and on the WAPs.

In this guide, the Common Name is set to adfs.lbtestdom.com. As mentioned on page 9, for AD FS v4.0 and later, an additional SAN can be added (certuth.adfs.lbtestdom.com) to allow certificate authentication over port 443. If this is not done, certificate authentication occurs over TCP 49443. In this scenario, port 49443 must be included in the VIP.

Note

The following warning is displayed for AD FS v4.0+ if the additional SAN is not included:

⚠️ The SSL certificate subject alternative names do not support host name 'certuth.adfs.lbtestdom.com'. Configuring certificate authentication binding on port '49443' and hostname 'adfs.lbtestdom.com'.

STEP 2 – Install AD FS on the first (Primary) Federation Server
Use Server Manager > Add Roles and Features to install AD FS, then run the Configuration Wizard:
Welcome to the Active Directory Federation Services Configuration Wizard.

Before you begin configuration, you must have the following:

- An Active Directory domain administrator account.
- A publicly trusted certificate for SSL server authentication.

AD FS prerequisites

Select an option below:

- Create the first federation server in a federation server farm
- Add a federation server to a federation server farm

Select **Create the first federation server in federation server farm** and click Next.

Specify an account with Active Directory domain administrator permissions to perform the federation service configuration.

LBTESTDOM\Administrator (Current user) Change...

Specify a suitable account and click Next.

SSL Certificate: acfs.lbtestdom.com Import...

Federation Service Name: acfs.lbtestdom.com

Example: fs.contoso.com

Federation Service Display Name: Loadbalancer.org Test Domain FS

Users will see the display name at sign in.

Example: Contoso Corporation

Choose the certificate created in Step 1, enter a display name and click Next.

- Choose a suitable service account and click Next.
Choose where configuration data will be stored and click Next.

As mentioned, click Configure to begin the installation.

STEP 3 – Install AD FS on the remaining Federation Server(s)

Use Server Manager > Add Roles and Features to install AD FS, then run the Configuration Wizard:

In this case, select Add a federation server to the federation server farm and click Next, then continue through the remaining screens until the installation & configuration is complete.

Load Balancer Configuration

Setting up the Virtual Service (VIP)

1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Virtual Services and click Add a New Virtual Service.

2. Enter the following details:
3. Enter an appropriate name (Label) for the Virtual Service, e.g. ADFS-Cluster.

4. Set the Virtual Service IP address field to the required IP address, e.g. 192.168.2.100.

5. Set the Virtual Service Ports field to 443.

| Note | If you don’t have the SAN certauth.your_adfs_service_name added to your SSL certificate, make sure port 49443 is also included in the VIP, i.e. set the Virtual Service Ports field to: 443,49443 rather than: 443. |

6. Set the Layer 7 Protocol to TCP Mode.

7. Click Update.

8. Now click Modify next to the newly created Virtual Service.

9. In the Other section, click Advanced to show more options.

10. Enable (check) the Timeout checkbox, set both Client Timeout and Real Server Timeout to 5m.

11. Click Update.

Configure the Health-check for "Windows 2012 R2 with KB2975719 & Later".

| Note | Update rollup KB2975719 was released in August 2014, so the health-check configuration presented in this section should be used in most if not all cases. |

1. Click Modify next to the newly created Virtual Service.

2. In the Health Checks section, click Advanced to show more options.

3. Configure the health check settings as shown below, this will configure the load balancer to look for an HTTP 200 OK response from each server:
4. Click **Update**.

Configure the Health-check for Windows 2012 R2 prior to KB2975719

The **adfs/probe** option above does not exist in older versions of Windows. In this case, the load balancer’s built-in SNI check must be used instead as described below:

1. Edit the file: `/var/lib/loadbalancer.org/check/sni-check-v2.sh`

 Note
 This SNI URI is the default AD FS sign-in URI and should not normally need changing.

2. Save the file.

3. Now click **Modify** next to the newly created Virtual Service.

4. Change **Health Checks** to **External Check**.

5. Change **Check Script** to **sni-check-v2.sh**.

6. Click **Update**.

Setting up the Real Servers (RIPs)

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created Virtual Service.

2. Enter the following details:
3. Enter an appropriate name (Label) for the first AD FS server, e.g. ADFS1.

4. Change the Real Server IP Address field to the required IP address, e.g. 192.168.2.110.

5. Set the Real Server Port field to 443.

 Note If you included port 49443 in the VIP, leave the Real Server Port field blank.

6. Click Update.

7. Now repeat for your remaining Federation server(s).

Applying the new Layer 7 Settings

1. Once the configuration is complete, use the Restart/Reload HAProxy button at the top of the screen to commit the changes, or use the WebUI option: Maintenance > Restart Services.

DNS Configuration

Create a suitable DNS entry for the load balanced AD FS servers, i.e. for the VIP on the load balancer.

e.g. adfs.lbtestdom.com

If your SSL certificate includes the additional SAN for certificate authentication, you’ll also need a suitable DNS entry for this.

e.g. certauth.adfs.lbtestdom.com

Testing & Verification

Note For additional general guidance please also refer to Testing Load Balanced Services.

The load balanced AD FS servers should now be accessible using the DNS entry for the VIP. Connect to the login page from a browser.

e.g. https://adfs.robtest.com/adfs/ls/idpinitiatedsignon.htm
As mentioned here, the Sign In page is disabled by default in AD FS 2016 (AD FS v4.0) and later. To manually enable it, use the following PowerShell command on the Primary Federation Server:

```
Set-AdfsProperties -EnableIdPInitiatedSignonPage $true
```

Log in when prompted. Once logged in, your browser should display something similar to the following:

![Login Page](image)

Web Application Proxy (WAP) Servers

WAP Server Installation & Configuration

The key points of the installation process are covered below. For more details, please also refer to the following Microsoft URLs:

- [How To Install AD FS 2016 For Office 365](#)

Note

The WAP servers must be able to access the internal AD FS VIP on port 443 via the "Federation Service Name" specified during installation / configuration. Make sure that firewalls, routing and DNS are configured to allow this. In this guide, the Federation Service Name used is `adfs.lbtestdom.com`, so an entry for this is added to the local hosts file on each WAP server which resolves to the AD FS VIP on the internal LAN.

STEP 1 – Prepare the SSL Certificate

Export the certificate & private key from one of the Federation Servers, then import the certificate into the local computer account certificate store on each WAP server. This will ensure the certificate is ready to use when the configuration wizard is run.

STEP 2 – Install & Configure Web Application Proxy (WAP) on the each WAP Server

1. Use `Server Manager > Add Roles and Features` to install Web Application Proxy, then run the Configuration
Wizard:

2. Enter the Federation service name and the user credentials and click Next.

3. Select the certificate to be used by the Proxy and click Next, then click Configure to start the configuration.

Load Balancer Configuration

Setting up the Virtual Service (VIP)
1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Virtual Services and click Add a New Virtual Service.

2. Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>ADFS-Proxy-Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Service</td>
<td>192.168.2.100</td>
</tr>
<tr>
<td>Ports</td>
<td>443</td>
</tr>
<tr>
<td>Layer 7 Protocol</td>
<td>TCP Mode</td>
</tr>
</tbody>
</table>

3. Enter an appropriate name (Label) for the Virtual Service, e.g. ADFS-Proxy-Cluster.
4. Set the Virtual Service IP address field to the required IP address, e.g. 192.168.2.100.
5. Set the Virtual Service Ports field to 443.
Note If you don’t have the SAN certauth.your_adfs_service_name added to your SSL certificate, make sure port 49443 is also included in the VIP, i.e. set the Virtual Service Ports field to: 443,49443 rather than: 443.

6. Set the Layer 7 Protocol to TCP Mode.
7. Click Update.
8. Now click Modify next to the newly created Virtual Service.
9. In the Other section, click Advanced to show more options.
10. Enable (check) the Timeout checkbox, set both Client Timeout and Real Server Timeout to 5m.
11. Click Update.

Configure the Health-check for Windows 2012 R2 with KB2975719 & Later

Note Update rollup KB2975719 was released in August 2014, so the health-check configuration presented in this section should be used in most if not all cases.

1. Click Modify next to the newly created Virtual Service.
2. In the Health Checks section, click Advanced to show more options.
3. Configure the health check settings as shown below, this will configure the load balancer to look for an HTTP 200 OK response from each server:

 a. Change Health Checks to Negotiate HTTP (GET).
 b. Set Check Port to 80.
 c. Set Request to send to adfs/probe.
 d. Leave Response Expected blank.

 Note As mentioned here, you’ll need to create an inbound rule to open port 80 on the firewall of each WAP server for this health-check to work. For the Federation servers this is configured automatically, but not for the WAPs.
Configure the Health-check for Windows 2012 R2 prior to KB2975719

The `adfs/probe` option above does not exist in older versions of AD FS. In this case, the load balancer’s built-in SNI check must be used instead as described below:

 Note This SNI URI is the default AD FS sign-in URI and should not normally need changing.

2. Save the file.

3. Now click **Modify** next to the newly created Virtual Service.

4. Change **Health Checks** to **External Check**.

5. Change **Check Script** to **sni-check-v2.sh**.

6. Click **Update**.

Setting up the Real Servers (RIPs)

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created Virtual Service.

2. Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>ADFS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>192.168.2.110</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>443</td>
</tr>
<tr>
<td>Re-Encrypt to Backend</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
</tbody>
</table>

3. Enter an appropriate name (Label) for the first AD FS server, e.g. **ADFS1**.

4. Change the **Real Server IP Address** field to the required IP address, e.g. **192.168.2.110**.

5. Set the **Real Server Port** field to **443**.

 Note If you included port 49443 in the VIP, leave the **Real Server Port** field blank.

6. Click **Update**.
7. Now repeat for your remaining WAP server(s).

Applying the new Layer 7 Settings
1. Once the configuration is complete, use the Restart/Reload HAProxy button at the top of the screen to commit the changes, or use the WebUI option: Maintenance > Restart Services.

DNS Configuration
Create a suitable DNS entry for the load balanced AD FS servers, i.e. for the VIP on the load balancer.

e.g. adfs.lbtestdom.com

If your SSL certificate includes the additional SAN for certificate authentication, you’ll also need a suitable DNS entry for this.

e.g. certauth.adfs.lbtestdom.com

Note
The WAP servers must be able to access the internal AD FS VIP on port 443 via the "Federation Service Name" specified during installation / configuration. Make sure that firewalls, routing and DNS are configured to allow this. In this guide, the Federation Service Name used is adfs.lbtestdom.com, so an entry for this is added to the local hosts file on each WAP server which resolves to the AD FS VIP on the internal LAN.

Testing & Verification

Note
For additional general guidance please also refer to Testing Load Balanced Services.

The load balanced AD FS servers should now be accessible using the DNS entry for the VIP. Connect to the login page from a browser.

e.g. https://adfs.robtest.com/adfs/ls/idpinitiatedsignon.htm

Login as prompted. Once logged in, your browser should display something similar to the following:
10. Technical Support

If you have any questions regarding the appliance or would like assistance designing your deployment, please don’t hesitate to contact our support team: support@loadbalancer.org.

11. Further Documentation

12. Conclusion

Loadbalancer.org appliances provide a very cost effective and flexible solution for highly available load balanced Active Directory Federation Services environments.
13. Appendix

Configuring HA - Adding a Secondary Appliance

Our recommended configuration is to use a clustered HA pair of load balancers to provide a highly available and resilient load balancing solution.

We recommend that the Primary appliance should be configured first, then the Secondary should be added. Once the Primary and Secondary are paired, all load balanced services configured on the Primary are automatically replicated to the Secondary over the network using SSH/SCP.

Note
For Enterprise Azure, the HA pair should be configured first. In Azure, when creating a VIP using an HA pair, 2 private IPs must be specified – one for the VIP when it’s active on the Primary and one for the VIP when it’s active on the Secondary. Configuring the HA pair first, enables both IPs to be specified when the VIP is created.

The clustered HA pair uses Heartbeat to determine the state of the other appliance. Should the active device (normally the Primary) suffer a failure, the passive device (normally the Secondary) will take over.

Note
A number of settings are not replicated as part of the Primary/Secondary pairing process and therefore must be manually configured on the Secondary appliance. These are listed by WebUI menu option in the table below:

<table>
<thead>
<tr>
<th>WebUI Main Menu Option</th>
<th>Sub Menu Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Configuration</td>
<td>Hostname & DNS</td>
<td>Hostname and DNS settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Network Interface</td>
<td>All network settings including IP address(es), bonding configuration and VLANs</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Routing</td>
<td>Routing configuration including default gateways and static routes</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>System Date & time</td>
<td>All time and date related settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Physical – Advanced Configuration</td>
<td>Various settings including Internet Proxy, Management Gateway, Firewall connection tracking table size, NIC offloading, SMTP relay, logging and Syslog Server</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Security</td>
<td>Appliance security settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>SNMP Configuration</td>
<td>Appliance SNMP settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Graphing</td>
<td>Appliance graphing settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>License Key</td>
<td>Appliance licensing</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Software Updates</td>
<td>Appliance software update management</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Script</td>
<td>Appliance firewall (iptables) configuration</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Lockdown</td>
<td>Appliance management lockdown settings</td>
</tr>
</tbody>
</table>

To add a Secondary node - i.e. create a highly available clustered pair:
1. Deploy a second appliance that will be the Secondary and configure initial network settings.

2. Using the WebUI on the Primary appliance, navigate to: Cluster Configuration > High-Availability Configuration.

3. Specify the IP address and the loadbalancer user’s password for the Secondary (peer) appliance as shown above.

4. Click Add new node.

5. The pairing process now commences as shown below:

6. Once complete, the following will be displayed on the Primary appliance:
7. To finalize the configuration, restart heartbeat and any other services as prompted in the blue message box at the top of the screen.

Note
Clicking the Restart Heartbeat button on the Primary appliance will also automatically restart heartbeat on the Secondary appliance.

Note
For more details on configuring HA with 2 appliances, please refer to Appliance Clustering for HA.
14. Document Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Change</th>
<th>Reason for Change</th>
<th>Changed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.0</td>
<td>7 August 2019</td>
<td>Styling and layout</td>
<td>General styling updates</td>
<td>RJC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added AD FS v5.0 (Win2019)</td>
<td>Support for latest version</td>
<td></td>
</tr>
<tr>
<td>1.4.1</td>
<td>7 January 2020</td>
<td>Removed links to certain Microsoft reference material</td>
<td>The related links are no longer available at microsoft.com</td>
<td>RJC</td>
</tr>
<tr>
<td>1.4.2</td>
<td>16 July 2020</td>
<td>New title page</td>
<td>Branding update</td>
<td>AH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Canadian contact details</td>
<td>Change to Canadian contact details</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revised instructions and screenshots for configuring health checks and VIP timeouts</td>
<td>Changes to the appliance WebUI</td>
<td></td>
</tr>
<tr>
<td>1.5.0</td>
<td>1 January 2022</td>
<td>Converted the document to AsciiDoc</td>
<td>Move to new documentation system</td>
<td>AH, RJC, ZAC</td>
</tr>
</tbody>
</table>
About Loadbalancer.org

Loadbalancer.org's mission is to ensure that its clients' businesses are never interrupted. The load balancer experts ask the right questions to get to the heart of what matters, bringing a depth of understanding to each deployment. Experience enables Loadbalancer.org engineers to design less complex, unbreakable solutions - and to provide exceptional personalized support.