Table of Contents

1. About this Guide ... 4
2. Loadbalancer.org Appliances Supported .. 4
3. Loadbalancer.org Software Versions Supported 4
4. StorageGRID Software Versions Supported 4
5. NetApp StorageGRID ... 4
 StorageGRID Node Types ... 4
6. Load Balancing NetApp StorageGRID .. 5
 Within a Single Site .. 5
 Using the Loadbalancer.org Appliance within a Single Site 5
 Across Multiple Sites ... 6
 Load Balancing Scenarios ... 7
 Scenario 1 ... 7
 Scenario 2 ... 8
7. Loadbalancer.org Appliance – the Basics .. 9
 Virtual Appliance .. 9
 Initial Network Configuration .. 10
 Accessing the WebUI .. 10
 Main Menu Options .. 11
8. StorageGRID and Loadbalancer.org Appliance Configuration – Scenario 1 ... 12
 StorageGRID Configuration ... 12
 High Availability Groups ... 12
 Loadbalancer.org Appliance Configuration 13
 Step 1 – Configure the HA Pair .. 13
 step 2 – Configure GSLB .. 14
 Step 3 – Finalising the Configuration ... 19
 Step 4 – Verify the GSLB Configuration 19
 DNS Server Configuration .. 19
9. StorageGRID and Loadbalancer.org Appliance Configuration – Scenario 2 ... 20
 StorageGRID Configuration ... 20
 Configure the Loadbalancer.org Appliance as A Trusted Layer 7 Loadbalancer ... 20
 Loadbalancer.org Appliance Configuration 22
 Step 1 – Configure the HA Pair .. 22
 Step 2 – Configure Local Server Load Balancing 22
 Step 3 – Configure GSLB .. 26
 Step 4 – Finalising the Configuration ... 31
 Step 5 – Verify the GSLB Configuration 31
 DNS Server Configuration .. 32
10. Testing & Verification .. 32
 Testing GSLB .. 32
 Verify the DNS Delegation ... 32
 Verify the Full DNS Request & Response 32
 Accessing the Service .. 33
 Testing Local Server Load Balancing .. 33
11. Technical Support ... 33
12. Further Documentation ... 33
13. Conclusion ... 33
14. Appendix .. 34
Configuring HA - Adding a Slave Appliance .. 34
1. About this Guide

This guide details the steps required to configure a load balanced NetApp StorageGRID environment utilizing Loadbalancer.org appliances. It covers the configuration of the load balancers and also any NetApp StorageGRID configuration changes that are required to enable load balancing.

For more information about initial appliance deployment, network configuration and using the Web User Interface (WebUI), please also refer to the Administration Manual.

2. Loadbalancer.org Appliances Supported

All our products can be used with StorageGRID. For full specifications of available models please refer to: https://www.loadbalancer.org/products

Some features may not be supported in all cloud platforms due to platform specific limitations. Please check with Loadbalancer.org support for details.

3. Loadbalancer.org Software Versions Supported

- V8.5.1 and later

4. StorageGRID Software Versions Supported

- v11.3 and later

5. NetApp StorageGRID

NetApp StorageGRID is a software-defined, object-based storage solution that supports industry-standard object APIs such as Amazon S3 and Swift. It allows you to build a single name space across many sites, with multiple service levels for metadata-driven object life-cycle policies.

StorageGRID protects data via intelligent policy with options including replica, erasure coding and cloud tier.

StorageGRID can be deployed as optimized hardware appliances, virtual machines, Docker containers or a combination of all three.

StorageGRID Node Types

- **Admin Node** – Admin Nodes provide system administration services such as system configuration, monitoring, and logging. Each StorageGRID system includes one primary Admin Node. The primary Admin Node hosts the Configuration Management Node (CMN) service which manages system-wide configurations and grid task. For redundancy, a StorageGRID system can have additional, Non-primary Admin Nodes.

- **Storage Node** – Storage Nodes manage the storage of objects to disk. This object management (both object data and object metadata) includes the evaluation of objects against ILM rules to determine how an object’s data is stored over time and protected from loss.

- **Gateway Node (Optional)** – Gateway Nodes provide a load balancing interface to the StorageGRID system through which applications can connect. The Gateway Nodes host the Connection Load Balancer (CLB) service which acts as a switchboard for connecting clients to the most efficient Local Distribution Router (LDR) service.
Note

StorageGRID v11.3 introduced a new Load Balancer service which is included on Gateway Nodes and on all Admin Nodes. This service provides Layer 7 load balancing of S3 and Swift traffic from clients to Storage Nodes. The legacy Connection Load Balancer (CLB) service on Gateway Nodes is still supported; however, configuring endpoints for the new Load Balancer service is recommended.

6. Load Balancing NetApp StorageGRID

Load balancing StorageGRID maximizes speed and connection capacity by distributing the connections and workloads across multiple Storage Nodes.

Within a Single Site

Load balancing StorageGRID can be achieved in the following ways:

1. Using the native in-built Load Balancer service, which is installed on Admin Nodes and Gateway Nodes. The Load Balancer service provides Layer 7 load balancing and performs TLS termination of client requests, inspects the requests, and establishes new secure connections to the Storage Nodes. This is the recommended load balancing mechanism.

2. Using a third-party load balancer.

Using the Loadbalancer.org Appliance within a Single Site

For load balancing option 2 above, the Loadbalancer.org appliance is an ideal solution. The following diagram shows how the load balancer is deployed within a single site. The load balancer can be configured to load balance both the Storage Nodes and the Admin Nodes as shown in the following diagram.

Configuration Notes:

- SSL bridging is configured for S3 client connections, this requires an SSL certificate to be installed on the Loadbalancer.org appliance. For more information please refer to the sections Upload SSL Certificate & Configure SSL Termination.
SSL pass-through is configured for HTTPS Grid / Tenant admin connections.

Note: If you’re using the Swift API rather than the S3 API, VIP 2 would be modified to connect to the Storage Nodes on port 18083 rather than port 18082.

Load Balancing & HA Requirements
The function of the load balancer is to ensure that inbound connections to a NetApp StorageGRID cluster are distributed across healthy StorageGRID nodes. To provide HA for the load balancer, Loadbalancer.org recommends that 2 appliances are deployed as an HA clustered pair.

Virtual Service (VIP) Requirements
To load balance the client connections across the Storage Nodes and load balance the Grid / Tenant admin connections across the Admin Nodes, 2 Virtual Services (VIPs) are required:

- **VIP 1**: Grid / Tenant admin connections
- **VIP 2**: S3 Client connections

SSL Termination & Re-encryption
The S3 Inbound client connections are terminated on the load balancer. Connections from the load balancer to the load balanced Storage Nodes are re-encrypted (SSL bridging).

VIP Operating Mode
The VIPs are configured using Layer 7 SNAT mode. This mode offers high performance and requires no configuration changes to the load balanced NetApp StorageGRID Nodes.

Timeouts
For NetApp StorageGRID, the load balancer’s client and server timeouts are set to 10 minutes.

Health Checks
For the Admin Nodes, a HTTP GET method is used to perform the health check. The load balancer issues HTTP GET requests to each individual Admin Node and expects a 200 OK response.

For the Storage Nodes, NetApp recommends that the HTTP OPTIONS method is used to perform the health check. The load balancer issues HTTP OPTIONS requests to each individual storage node and expects a 200 OK response.

Across Multiple Sites
Where StorageGRID is deployed across multiple sites, Global Sever Load Balancing (GSLB) is used. All Loadbalancer.org appliances have this functionality built-in by default at no extra cost.

The GSLB functionality coupled with DNS delegation enables each load balancer to act as a smart DNS name server for the sub domains (in this guide admin.company.com & s3.company.com).

Each StorageGRID node is regularly health-checked by each load balancer and this information is used when providing the smart DNS response to inbound DNS queries.
Load Balancing Scenarios

Since there are 2 ways to load balance the Storage Nodes within a single site (excluding the legacy CLB service), there are effectively 2 possible load balancing scenarios for a particular multi-site deployment as shown in the following table:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Local Server Load Balancing Method</th>
<th>Inter-site Load Balancing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>StorageGRID Load Balancer Endpoints configured on Admin Nodes & Gateway Nodes</td>
<td>Loadbalancer.org Appliance (GSLB functionality)</td>
</tr>
<tr>
<td>2</td>
<td>Loadbalancer.org Appliance (server load balancing Functionality)</td>
<td>Loadbalancer.org Appliance (GSLB functionality)</td>
</tr>
</tbody>
</table>

Both scenarios provide viable options when setting up load balancing for a multi-site StorageGRID deployment.

As explained here, when configuring Load Balancer Endpoints in StorageGRID for local site load balancing, it’s important to remember that End Points configured on each Admin / Gateway node are independent from one another.

Scenario 1

GSLB: Handled by Loadbalancer.org Appliances

SLB: Handled by NetApp Admin & Gateway Nodes
Explanation:

1. The client sends a DNS query for either admin.company.com or s3.company.com to the local DNS server.
2. The local DNS server has the sub domain delegated to all LB.org appliances (the LB.org appliances are configured as name servers for the sub domains).
3. One of the LB.org appliances receives the delegated DNS query.
4. If the query is for s3.company.com the LB.org appliance selects HA Group VIP 2 (10.0.0.51) in DC 1 based on the GSLB topology configuration and GSLB health checks.
5. The LB.org appliance returns the IP address to the DNS server.
6. The DNS server returns the IP address to the client.
7. The client connects to 10.0.0.51 on port 18443 for the S3 client connection.
8. The active Admin Node (10.0.0.10) then load balances the connection to Storage Node 1 (10.0.0.15) based on the StorageGRID load balancing algorithm.

Scenario 2

GSLB: Handled by Loadbalancer.org Appliances

SLB: Handled by Loadbalancer.org Appliances
Explanation:

1. The client sends a DNS query for either admin.company.com or s3.company.com to the local DNS server.
2. The local DNS server has the sub domains delegated to all LB.org appliances (the LB.org appliances are configured as name servers for the sub domain).
3. One of the LB.org appliance receives the delegated DNS query.
4. If the query is for s3.company.com the LB.org appliance selects the S3 VIP (10.0.0.21) in DC 1 based on the GSLB topology configuration and GSLB health checks.
5. The LB.org appliance returns the IP address to the DNS server.
6. The DNS server returns the IP address to the client.
7. The client connects to 10.0.0.21 on port 443 for the S3 client connection.
8. The LB.org appliance then load balances the connection to Storage Node 2 (10.0.0.16) based on the LB.org appliance’s load balancing algorithm.

7. Loadbalancer.org Appliance – the Basics

Virtual Appliance

A fully featured, fully supported 30 day trial is available if you are conducting a PoC (Proof of Concept) deployment. The VA is currently available for VMware, Virtual Box, Hyper-V, KVM, XEN and Nutanix AHV and has been.
optimized for each Hypervisor. By default, the VA is allocated 1 CPU, 2GB of RAM and has a 20GB virtual disk. The Virtual Appliance can be downloaded here.

Note: The same download is used for the licensed product, the only difference is that a license key file (supplied by our sales team when the product is purchased) must be applied using the appliance’s WebUI.

Note: Please refer to the Administration Manual and view the ReadMe.txt text file included in the VA download for more detailed information on deploying the VA using various Hypervisors.

Note: For the VA, 4 NICs are included but only eth0 is connected by default at power up. If the other NICs are required, these should be connected using the network configuration screen within the Hypervisor.

Initial Network Configuration
After boot up, follow the instructions on the console to configure the IP address, subnet mask, default gateway, DNS and other network settings.

Important: Be sure to set a secure password for the load balancer, when prompted during the setup routine.

Accessing the WebUI
The WebUI is accessed using a web browser. Appliance authentication is based on Apache .htaccess files. User admin tasks such as adding users and changing passwords can be performed using the WebUI menu option: Maintenance > Passwords.

Note: A number of compatibility issues have been found with various versions of Internet Explorer. The WebUI has been tested and verified using both Chrome & Firefox.

Note: If required, users can also be authenticated against LDAP, LDAPS, Active Directory or Radius. For more information please click here.

1. Using a browser, access the WebUI using the following URL:

2. Log in to the WebUI:

 Username: loadbalancer
 Password: <configured-during-network-setup-wizard>

 Note: To change the password, use the WebUI menu option: Maintenance > Passwords.

Once logged in, the WebUI will be displayed as shown below:
The WebUI for the VA is shown, the hardware and cloud appliances are very similar. The yellow licensing related message is platform & model dependant.

3. You’ll be asked if you want to run the Setup Wizard. If you click **Accept** the Layer 7 Virtual Service configuration wizard will start. If you want to configure the appliance manually, simple click **Dismiss**.

Main Menu Options

- **System Overview** - Displays a graphical summary of all VIPs, RIPS and key appliance statistics
- **Local Configuration** - Configure local host settings such as IP address, DNS, system time etc.
- **Cluster Configuration** - Configure load balanced services such as VIPs & RIPS
- **Maintenance** - Perform maintenance tasks such as service restarts and taking backups
- **View Configuration** - Display the saved appliance configuration settings
- **Reports** - View various appliance reports & graphs
8. StorageGRID and Loadbalancer.org Appliance Configuration – Scenario 1

This configuration steps presented in this section relate to the deployment scenario presented here. With this scenario, local site server load balancing is handled by the NetApp Admin Nodes, global load balancing is handled by the Loadbalancer.org appliances.

StorageGRID Configuration

In this guide, an HA Group is configured which contain 2 Admin nodes and has 2 VIPs; one for the Grid Admin / Tenant connections and the other for the S3 client connections. A Load Balancer Endpoint is also configured to load balance the S3 client connections.

High Availability Groups

To configure HA Groups, use the StorageGRID menu option: **Configuration > High Availability Groups**.

As mentioned, an HA Group with 2 VIPs is configured as shown below:
Load Balancer Endpoints

To configure Endpoints, use the StorageGRID menu option: Configuration > Load Balancer Endpoints.

Note

As explained in the second message in the screenshot below, endpoints configured on ports 80 and 443 only function on Gateway Nodes. Therefore if endpoints are configured on Admin Nodes, the standard HTTP & HTTPS ports cannot be used. In this guide, S3 Endpoints are configured on Admin Nodes, therefore the S3 HTTPS endpoint is configured on the alternative arbitrary port 18443. This can of course be changed as required.

Note

For more information on configuring Load Balancer Endpoints, please refer to the NetApp Documentation Center.

Loadbalancer.org Appliance Configuration

Step 1 – Configure the HA Pair

If you intend to deploy 2 LB.org load balancers at each site in order to configure an HA clustered pair (our recommended configuration) then the HA pair should be configured first before other configuration takes place. This simplifies the process since GSLB settings will then be automatically replicated to the paired appliance. This helps ensure that both appliances are correctly configured and ready for sub domain delegation - please refer to the section DNS Server Configuration.

Once the HA pair is configured, all configuration steps should take place on the master unit, the slave unit will then be kept in sync automatically. Please refer to the section Configuring HA - Adding a Slave Appliance for details on configuring an HA pair.
step 2 – Configure GSLB
For Scenario 1, the LB.org appliance requires 2 sub domain definitions; one for the admin connections and the other for the S3 client connections. Configuration takes place in the WebUI under Cluster Configuration > GSLB Configuration. The GSLB configuration must be identical across all appliances and sites to ensure that DNS replies are consistent.

a) Configure the Global Names
This is where the sub domains that are handled by GSLB are defined.

To add Global Names:

1. Using the WebUI on the master appliance, navigate to Cluster Configuration > GSLB Configuration
2. Select the Global Names tab
3. Click the New Global Name button

4. Define a friendly Name for the new hostname, which can just be the subdomain itself, e.g. admin.company.com
5. Define the Hostname of what will be the delegated subdomain, e.g. admin.company.com
6. Set the required TTL, the default is 30s
7. Click Submit

>>> Now repeat steps 1 – 7 to define the s3.company.com sub domain. Once complete, both sub domains will be displayed:
b) Configure the Members
In this Scenario the members are the **HA Group VIPs** defined in StorageGRID.

To add members:

1. Select the **Members** tab
2. Click the **New Member** button

3. Enter a friendly **Name** for the member, e.g. **DC1-admin-VIP**
4. Specify an **IP** address for the member, e.g. **10.0.0.50**
5. Set **Monitor IP** to the same value, e.g. **10.0.0.50**
6. Click **Submit**

>>> Now repeat steps 1 – 6 to define the remaining members, in this guide **DC2-admin-VIP**, **DC1-S3-VIP** and **DC2-S3-VIP**. Once complete, all members will be displayed:
c) Configure the Pools
A pool must be created to link together each global name with the relevant members that must serve traffic for that global name.

To Add a Pool:

1. Select the Pools tab
2. Click the New Pool button
3. Enter a friendly Name for the pool, e.g. Admin-Nodes
4. Set the Monitor to TCP
5. Set Monitor Port to 443
6. Set LB Method to twrr
7. From the Global Names list box, select the global name in question, e.g. admin.company.com
8. In the Members section, drag the appropriate members (i.e. the Admin nodes) from the Available Members box into the Members In Use box, e.g. DC1-admin-VIP & DC2-admin-VIP
9. Click Submit

>>> Now repeat steps 1 – 9 to define the remaining pool, in this guide S3-Nodes ensuring that the Monitor Port is set to 18443 (this is the value used in this guide). Once complete, both pools will be displayed:
d) Configure the Topology

The example below relates to Scenario 1 which has one client site and 2 DCs. This topology definition associates Client Site 1 with DC 1. This ensures that under normal circumstances client connections from Client Site 1 (subnet 192.168.10.0/24) will be handled by DC1.

To Add a Topology:

1. Select the Topologies tab
2. Click the New Topology button
3. Enter a friendly Name for the topology, e.g. DC1
4. In the IP/CIDR text box, define the subnet(s) that covers the site in question, e.g. 10.0.0.0/24, 192.168.10.0/24

Note: This can be a comma separated list of subnets as shown, or specific hosts. The key is that the site’s local DNS server and the IP addresses of the StorageGRID nodes fall within the union of all subnets and hosts defined for the site. This is what allows DNS queries originating from the site to be matched up with that site’s local nodes: the IP addresses of the local nodes are then served as DNS responses for clients at that site.
5. Click Submit
>>> Now repeat steps 1 – 5 to define the other topologies, in this guide for DC2. Once complete, all Topologies will be displayed:

![Topologies](image)

Step 3 – Finalising the Configuration
To apply the new settings, the GSLB service must be restarted as follows:

1. Using the WebUI, navigate to: Maintenance > Restart Services and click Restart GSLB

Step 4 – Verify the GSLB Configuration
The GSLB configuration should be tested to ensure it's working as expected and that both master and slave appliances are able to correctly respond to DNS queries for the sub domains. This must be operating correctly when configuring the DNS delegation in the following section.

From a Windows command prompt, the `nslookup` command can be used to send test DNS queries to the load balancers. The master load balancer is located at IP address 10.0.0.1 in the example presented here.

For the test, use the `-norecurse` option to instruct the load balancer not to attempt to query another server for the answer. A successful test would see the load balancer respond with the IP address of one of the online HA Group VIPs as shown below:

```
C:\Users\me>nslookup -norecurse admin.company.com 10.0.0.1
Server: UnKnown
Address: 10.0.0.1
Name: admin.company.com
Address: 10.0.0.50
```

This test should be repeated for the `s3.company.com` sub domain and then using the IP address of the slave unit to ensure that the slave is also able to correctly respond to the DNS queries.

DNS Server Configuration
Once the GSLB service has been configured on the master & slave load balancer at each site, the local DNS server at each client site must then be configured for GSLB.

The DNS server at each client site must be configured to delegate DNS requests for the subdomain in question to the load balancers. The load balancer's GSLB services will then serve the appropriate IP addresses to the local DNS server and back to the clients. For the example presented in this guide, the DNS server at the client site must be configured with a delegation for the sub domains `admin.company.com` and `s3.company.com`. The master and slave load balancers at DC1 and DC2 are configured as Name Servers for the sub domain which provides multi-site
redundancy.

The exact steps for creating a DNS delegation vary between different DNS servers and are outside the scope of this document. For further information, a blog post that walks through creating a DNS delegation on a Microsoft DNS server in the context of setting up GSLB on our appliance can be found [here](see the section titled "Delegating your subdomain to your GSLB’s using Microsoft’s DNS Server").

9. StorageGRID and Loadbalancer.org Appliance Configuration – Scenario 2

This configuration steps presented in this section relates to the deployment scenario presented [here](see the section titled "Delegating your subdomain to your GSLB’s using Microsoft’s DNS Server"). With this scenario, local site server load balancing and global load balancing are both handled by the Loadbalancer.org appliances.

StorageGRID Configuration

High Availability Groups and Load Balancer Endpoints are not required for scenario 2. In this scenario the Loadbalancer.org appliance handles both local and global load balancing. To successfully use an external layer 7 load balancer to route requests to StorageGRID v11.4.0 and later, the load balancer must be authorized within StorageGRID. This process is described in the following section.

Configure the Loadbalancer.org Appliance as A Trusted Layer 7 Loadbalancer

If an external (third party) Layer 7 load balancer is used to route requests to the Storage Nodes, StorageGRID needs to determine the real sender’s IP address. It does this by looking at the X-Forwarded-For (XFF) header, which is inserted into the request by the load balancer. As the X-Forwarded-For header can be easily spoofed in requests sent directly to the Storage Nodes, StorageGRID needs to ensure that each request is being routed by a trusted Layer 7 load balancer. If StorageGRID cannot trust the source of the request, it will ignore the X-Forwarded-For header.

In StorageGRID v11.4.0 and later, a new Grid Management API has been added to allow a list of trusted external Layer 7 load balancers to be configured.

To configure the Bucket policy and StorageGRID API, follow steps 1 – 4 below.

Note More information for registered NetApp customers can be found [here](see the section titled "Delegating your subdomain to your GSLB’s using Microsoft’s DNS Server").

Step 1 – Configure the Bucket Policy

In the following example, everyone (including anonymous) is allowed to List the bucket and perform any Object operations on all objects in the bucket, provided that the requests come from a specified IP range (54.240.143.0 to 54.240.143.255, except 54.240.143.188). All other operations will be denied, and all requests outside of the IP range will be denied.
Step 2 – Generate an Authorization Token

- Navigate to the Authorization token section within the StorageGRID API:

- Click Try it out

- Update the username and password in the Post body

- Click the blue Execute bar

- If valid credentials have been provided, the Authorization token will be generated and displayed at the top of the screen:

 The token is automatically inserted into every subsequent request sent from the page. If the page is closed, a new Authorization token must be generated.

Step 3 – Authorize the Load balancer

- Navigate to the External Load Balancer section within the StorageGRID API:

- Click Try it out

- Update the IP address in the Put body

Note The IP address defined should be the address allocated to the load balancer’s network interface when it was deployed. This can be viewed using the Loadbalancer.org WebUI by navigating to: Local Configuration > Network Interface Configuration.
Click the blue **Execute** bar

Scroll down to the **Server response** section and verify that the IP address has been set successfully:

```
{
    "responseTime": "2020-09-02T10:13:06.404Z",
    "status": "success",
    "apiVersion": "3.2",
    "data": ["192.168.10.100"
}
```

Step 4 – Verify the Configuration

Note
This step should be completed AFTER the VIPs have been configured on the Loadbalancer.org appliance and HAPerxy has been restarted. Please refer to **Step 2 – Configure Local Server Load Balancing** below for details on configuring the VIPs.

*Send an anonymous request through the load balancer:

```
aws s3api --no-sign-request --endpoint-url https://<VIP address> list-objects --bucket examplebucket
```

If you send the request from an IP address that is allowed in the policy, the request should succeed. If you send the request from any other IP address, the request should fail as *Access Denied*.

Loadbalancer.org Appliance Configuration

Step 1 – Configure the HA Pair

If you intend to deploy 2 LB.org load balancers at each site in order to configure an HA clustered pair (our recommended configuration) then the HA pair should be configured first before other configuration takes place. This simplifies the process since GSLB settings will then be automatically replicated to the paired appliance. This helps ensure that both appliances are correctly configured and ready for sub domain delegation. For more information please refer to the section **DNS Server Configuration**.

Once the HA pair is configured, all configuration steps should take place on the master unit, the slave unit will then be kept in sync automatically. For details on configuring an HA pair, please refer to the section **Configuring HA - Adding a Slave Appliance**.

Step 2 – Configure Local Server Load Balancing

Within each site 2 VIPs are required. One to load balance the Grid / Tenant Manager connections and the other to load balance the S3 client connections.

VIP 1 – Grid / Tenant Admin

a) Configure the VIP

1. Using the WebUI, navigate to **Cluster Configuration > Layer 7 – Virtual Services** and click on **Add a new Virtual Service**

2. Enter the following details:
3. Enter an appropriate name for the VIP in the Label field, e.g. NetApp-Admin
4. Set the Virtual Service IP address field to the required IP address, e.g. 10.0.0.20
5. Set the Virtual Service Ports field to 443
6. Set the Layer 7 Protocol to TCP Mode
7. Click Update
8. Now click Modify next to the newly created VIP
9. Scroll down to the Persistence section and set Persistence Mode to None
10. Scroll down to the Health Checks section and set the Health Check to Negotiate HTTPS (GET)
11. Leave Response Expected blank – this will cause the load balancer to look for a HTTP 200 OK response from each Storage Node
12. Scroll down to the Other section and click [Advanced]
13. Enable (check) the Timeout checkbox and set both Client Timeout & Real Server Timeout to 10m (i.e. 10 minutes)
14. Click Update

b) Define the Associated Real Servers
1. Using the WebUI, navigate to Cluster Configuration > Layer 7 – Real Servers and click on Add a new Real Server next to the newly created NetApp-Admin VIP

2. Enter an appropriate name for the server in the Label field, e.g. AdminNode1
3. Change the **Real Server IP Address** field to the required IP address, e.g. **10.0.0.10**

4. Set the **Real Server Port** field to **443**

5. Click **Update**

6. Now repeat these steps to add the other Admin Node(s)

VIP 2 – S3 Client Access

a) Configure the VIP

1. Using the WebUI, navigate to **Cluster Configuration > Layer 7 – Virtual Services** and click on **Add a new Virtual Service**

2. Enter the following details:

 ![Virtual Service Configuration](image)

 3. Enter an appropriate name for the VIP in the **Label** field, e.g. **NetApp-S3**

 4. Set the **Virtual Service IP address** field to the required IP address, e.g. **10.0.0.21**

 5. Set the **Virtual Service Ports** field to the required value, e.g. **80**

 6. Set the **Layer 7 Protocol** to **HTTP Mode**

 7. Click **Update**

 8. Now click **Modify** next to the newly created VIP

 9. Scroll down to the **Persistence** section and set **Persistence Mode** to **None**

 10. Scroll down to the **Health Checks** section and set the **Health Check** to **Negotiate HTTPS (OPTIONS)**

 11. Leave **Response Expected** blank – this will cause the load balancer to look for a **HTTP 200 OK** response from each Storage Node

 12. Scroll down to the **Other** section and click **[Advanced]**

 13. Enable (check) the **Timeout** checkbox and set both **Client Timeout & Real Server Timeout** to **10m** (i.e. 10 minutes)

 14. Click **Update**

b) Define the Associated Real Servers

1. Using the WebUI, navigate to **Cluster Configuration > Layer 7 – Real Servers** and click on **Add a new Real Server** next to the newly created NetApp-S3 VIP
2. Enter an appropriate name for the server in the Label field, e.g. StorageNode1
3. Change the Real Server IP Address field to the required IP address, e.g. 10.0.0.15
4. Set the Real Server Port field to 18082
5. Enable (check) Re-Encrypt to Backend
6. Click Update
7. Now repeat these steps to add the other Storage Node(s)

Note
As storage nodes are added or decommissioned due to capacity changes or hardware refresh, you will need to update the Real Server configuration accordingly.

c) Upload SSL Certificate
SSL certificates can be uploaded to the appliance and used with SSL termination VIPs. Both PFX and PEM format certificates can be uploaded.

To upload a Certificate:

1. Using the WebUI, navigate to: Cluster Configuration > SSL Certificates
2. Click Add a new SSL Certificate & select Upload prepared PEM/PFX file

 ![Image of the SSL Certificate upload form]

3. Enter a suitable Label (name) for the certificate, e.g. StorageGRID
4. Browse to and select the certificate file to upload (PEM or PFX format)
5. Enter the password, if applicable
6. Click **Upload Certificate**, if successful, a message similar to the following will be displayed:

```
Information: cert1 SSL Certificate uploaded successfully.
```

d) Configure SSL Termination

1. Using the WebUI, navigate to: **Cluster Configuration > SSL Termination** and click **Add a new Virtual Service**

<table>
<thead>
<tr>
<th>Label</th>
<th>NetAppS3-SSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated Virtual Service</td>
<td>NetApp-S3</td>
</tr>
<tr>
<td>Virtual Service Port</td>
<td>443</td>
</tr>
<tr>
<td>SSL Operation Mode</td>
<td>High Security</td>
</tr>
<tr>
<td>SSL Certificate</td>
<td>StorageGRID</td>
</tr>
</tbody>
</table>

2. Enter a suitable **Label** (name) for the VIP, e.g. **NetAppS3-SSL**

3. Set **Associated Virtual Service** to the appropriate VIP, e.g. **NetApp-S3** (this associates the SSL termination with S3 VIP created in the previous section)

4. Select the **SSL Certificate** uploaded previously, e.g. **StorageGRID**

5. Click **Update**

e) Apply the Configuration – Reload Services

1. To apply the new settings, reload HAProxy and STunnel using the buttons in the blue box at the top of the screen.

Step 3 – Configure GSLB

For Scenario 2, as with Scenario 1 the LB.org appliance requires 2 sub domain definitions; one for the admin connections and the other for the S3 client connections. Configuration takes place in the WebUI under **Cluster Configuration > GSLB Configuration**. The GSLB configuration must be identical across all appliances and sites to ensure that DNS replies are consistent.

a) Configure the Global Names

This is where the sub domains that are handled by GSLB are defined.

To add Global Names:

1. Using the WebUI on the master appliance, navigate to **Cluster Configuration > GSLB Configuration**

2. Select the **Global Names** tab

3. Click the **New Global Name** button
4. Define a friendly *Name* for the new hostname, which can just be the subdomain itself, e.g. `admin.company.com`

5. Define the *Hostname* of what will be the delegated subdomain, e.g. `admin.company.com`

6. Click Submit

>>> Now repeat steps 1 – 6 to define the `s3.company.com` sub domain. Once complete, both sub domains will be displayed:

b) Configure the Members

In this Scenario the members are the **LB.org appliance VIPs**.

To add members:

1. Select the *Members* tab

2. Click the *New Member* button
3. Enter a friendly Name for the member, e.g. DC1-admin-VIP
4. Specify an IP address for the member, e.g. 10.0.0.20
5. Set Monitor IP to the same value, e.g. 10.0.0.20
6. Click Submit

>>> Now repeat steps 1 – 6 to define the remaining members, in this guide DC2-admin-VIP, DC1-S3-VIP and DC2-S3-VIP. Once complete, all members will be displayed:

c) Configure The Pools
A pool must be created to link together each global name with the relevant members that must serve traffic for that global name.

To Add a Pool:

1. Select the Pools tab
2. Click the New Pool button
3. Enter a friendly Name for the pool, e.g. **Admin-Nodes**

4. Set the Monitor to **TCP**

5. Set Monitor Port to **443**

6. Set LB Method to **twrr**

7. From the **Global Names** list box, select the global name in question, e.g. **admin.company.com**

8. In the **Members** section, drag the appropriate members (i.e. the Admin nodes) from the **Available Members** box into the **Members In Use** box, e.g. **DC1-admin-VIP & DC2-admin-VIP**

9. Click **Submit**

>>> Now repeat steps 1 – 9 to define the remaining pool, in this guide **S3-Nodes**. Once complete, both pools will be displayed:
d) Configure The Topology

The example below relates to Scenario 2 which has one client site and 2 DCs. This topology definition associates Client Site 1 with DC 1. This ensures that under normal circumstances client connections from Client Site 1 (subnet 192.168.10.0/24) will be handled by DC 1.

To Add a Topology:

1. Select the Topologies tab
2. Click the New Topology button
3. Enter a friendly Name for the topology, e.g. DC1
4. In the IP/CIDR text box, define the subnet(s) that covers the site in question, e.g. 10.0.0.0/24, 192.168.10.0/24
Note

This can be a comma separated list of subnets as shown, or specific hosts. The key is that
the site’s local DNS server and the IP addresses of the StorageGRID nodes fall within the
union of all subnets and hosts defined for the site. This is what allows DNS queries
originating from the site to be matched up with that site’s local nodes: the IP addresses of
the local nodes are then served as DNS responses for clients at that site.

5. Click Submit

>>> Now repeat steps 1 – 5 to define the other topologies, in this guide for DC2. Once complete, all Topologies will
be displayed:

![Topology Table]

Step 4 – Finalising the Configuration
To apply the new settings, the GSLB service must be restarted as follows:

1. Using the WebUI, navigate to: Maintenance > Restart Services and click Restart GSLB

Step 5 – Verify the GSLB Configuration
The GSLB configuration should be tested to ensure it’s working as expected and that both master and slave
appliances are able to correctly respond to DNS queries for the sub domains. This must be operating correctly
when configuring the DNS delegation in the following section.

From a Windows command prompt, the nslookup command can be used to send test DNS queries to the load
balancers. The master load balancer is located at IP address 10.0.0.1 in the example presented here.

For the test, use the -norecurse option to instruct the load balancer not to attempt to query another server for the
answer. A successful test would see the load balancer respond with the IP address of one of the online LB.org
appliance VIPs as shown below:

```
C:\Users\me>nslookup -norecurse admin.company.com 10.0.0.1
Server: UnKnown
Address: 10.0.0.1

Name: admin.company.com
Address: 10.0.0.20
```

This test should be repeated for the s3.company.com sub domain and then using the IP address of the slave unit
to ensure that the slave is also able to correctly respond to the DNS queries.
DNS Server Configuration

Once the GSLB service has been configured on the master & slave load balancer at each site, the local DNS server at each client site must then be configured for GSLB.

The DNS server at each client site must be configured to delegate DNS requests for the subdomain in question to the load balancers. The load balancer’s GSLB services will then serve the appropriate IP addresses to the local DNS server and back to the clients. For the example presented in this guide, the DNS server at the client site must be configured with a delegation for the sub domains `admin.company.com` and `s3.company.com`. The master and slave load balancers at DC1 and DC2 are configured as Name Servers for the sub domain which provides multi-site redundancy.

The exact steps for creating a DNS delegation vary between different DNS servers and are outside the scope of this document. For further information, a blog post that walks through creating a DNS delegation on a Microsoft DNS server in the context of setting up GSLB on our appliance can be found [here](see the section titled “Delegating your subdomain to your GSLB’s using Microsoft’s DNS Server”).

10. Testing & Verification

Once the load balancer and storage nodes are configured, ensure that you can successfully connect to the StorageGRID deployment. You’ll need to test & verify GSLB for deployment Scenario 1 and you’ll need to test & verify GSLB and also the server load balancing configuration for deployment Scenario 2.

Testing GSLB

The complete GSLB & DNS configuration should be checked, ensuring that the client is able to resolve the sub domain FQDNs of the StorageGRID deployment via delegation and connect to a healthy node.

Verify the DNS Delegation

From a Windows command prompt, the `nslookup` command can be used to send test DNS queries to the DNS server. The DNS server is located at IP address 10.0.0.50 in the example presented here.

For this test, use the `-norecurse` option to instruct the DNS server not to query another server for the answer. A successful test would see the DNS server respond and indicate that the subdomain in question is served by other name servers, giving the other server’s details as shown in the example below:

```
C:\Users\me>nslookup -norecurse admin.company.com 10.0.0.50
Server: UnKnown
Address: 10.0.0.50
Name: admin.company.com
Served by:
- lbmaster.company.com
  10.0.0.1
  admin.company.com
- lbslave.company.com
  10.0.0.2
  admin.company.com
```

Verify the Full DNS Request & Response

Now execute the same command without the `-norecurse` option. This should see the DNS server fetch the answer from one of the load balancers and then serve up the ‘fetched’ answer in its response. A successful test would see the server reply with the IP address of one of the online HA Group VIPs (scenario 1) or one of the online LB.org appliance VIPs (scenario 2) as shown in the example below:
Accessing the Service
A successful test will see the test connection passed from the test client to one of the online HA Group VIPs (scenario 1) or one of the online LB.org appliance VIPs (scenario 2).

Testing Local Server Load Balancing
For the server load balancing configuration of scenario 2, verify that you can connect to the StorageGRID deployment via the VIP addresses on the load balancer.

The System Overview can be viewed using the WebUI. It shows a graphical view of all VIPs & RIPs (i.e. the StorageGRID nodes) and shows the state/health of each node as well as the state of the cluster as a whole.

The example below shows that all NetApp StorageGRID nodes are healthy and available to accept connections.

11. Technical Support
For more details about configuring the appliance and assistance with designing your deployment please don’t hesitate to contact the support team using the following email address: support@loadbalancer.org

12. Further Documentation

13. Conclusion
Loadbalancer.org appliances provide a very cost effective solution for highly available load balanced NetApp StorageGRID environments.
14. Appendix

Configuring HA - Adding a Slave Appliance

Our recommended configuration is to use a clustered HA pair of load balancers to provide a highly available and resilient load balancing solution.

We recommend that the master appliance is fully configured first, then the slave should be added. Once the master and slave are paired, all load balanced services configured on the master are automatically replicated to the slave over the network using SSH/SCP.

Note
For Enterprise Azure, the HA pair should be configured first. In Azure, when creating a VIP using an HA pair, 2 private IPs must be specified – one for the VIP when it’s active on the Master and one for the VIP when it’s active on the Slave. Configuring the HA pair first, enables both IPs to be specified when the VIP is created.

The clustered HA pair uses Heartbeat to determine the state of the other appliance. Should the active device (normally the master) suffer a failure, the passive device (normally the slave) will take over.

Note
A number of settings are not replicated as part of the master/slave pairing process and therefore must be manually configured on the slave appliance. These are listed by WebUI menu option in the table below:

<table>
<thead>
<tr>
<th>WebUI Main Menu Option</th>
<th>Sub Menu Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Configuration</td>
<td>Hostname & DNS</td>
<td>Hostname and DNS settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Network Interface</td>
<td>All network settings including IP address(es), bonding configuration and VLANs</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Routing</td>
<td>Routing configuration including default gateways and static routes</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>System Date & time</td>
<td>All time and date related settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Physical – Advanced</td>
<td>Various settings including Internet Proxy, Management Gateway,</td>
</tr>
<tr>
<td></td>
<td>Configuration</td>
<td>Firewall connection tracking table size, NIC offloading, SMTP relay,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>logging and Syslog Server</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Security</td>
<td>Appliance security settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>SNMP Configuration</td>
<td>Appliance SNMP settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Graphing</td>
<td>Appliance graphing settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>License Key</td>
<td>Appliance licensing</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Software Updates</td>
<td>Appliance software update management</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Script</td>
<td>Appliance firewall (iptables) configuration</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Lockdown Wizard</td>
<td>Appliance management lockdown settings</td>
</tr>
</tbody>
</table>

To add a slave node - i.e. create a highly available clustered pair:
1. Deploy a second appliance that will be the slave and configure initial network settings.

2. Using the WebUI, navigate to: **Cluster Configuration > High-Availability Configuration**

 ![Create a Clustered Pair](image)

 - **Local IP address**: 192.168.1.20
 - **IP address of new peer**: 192.168.1.21
 - **Password for loadbalancer user on peer**: ********

 ![Add new node](image)

3. Specify the IP address and the *loadbalancer* user’s password for the slave (peer) appliance as shown above.

4. Click **Add new node**.

5. The pairing process now commences as shown below:

 ![Create a Clustered Pair](image)

 ![configuring](image)

6. Once complete, the following will be displayed:

 ![High Availability Configuration - master](image)

7. To finalize the configuration, restart heartbeat and any other services as prompted in the blue message box at
Clicking the **Restart Heartbeat** button on the master appliance will also automatically restart heartbeat on the slave appliance.

For more details on configuring HA with 2 appliances, please refer to Chapter 9 in the **Administration Manual**.
15. Document Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Change</th>
<th>Reason for Change</th>
<th>Changed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0</td>
<td>5th November 2019</td>
<td>First draft</td>
<td></td>
<td>RJC</td>
</tr>
<tr>
<td>1.1.0</td>
<td>31st March 2010</td>
<td>Extensive document re-write</td>
<td>Revised load balancing methodology and addition of GSLB to handle multi-site scenarios</td>
<td>RJC</td>
</tr>
<tr>
<td>1.1.1</td>
<td>28th April 2020</td>
<td>Various minor updates</td>
<td>Required updates</td>
<td>RJC</td>
</tr>
<tr>
<td>1.1.2</td>
<td>2nd September 2020</td>
<td>Added section describing how to configure 3rd party layer 7 load balancer authorization</td>
<td>New feature of StorageGRID v11.4</td>
<td>RJC</td>
</tr>
<tr>
<td>1.1.3</td>
<td>14th October 2020</td>
<td>New title page</td>
<td>Branding update</td>
<td>AH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Canadian contact details</td>
<td>Change to Canadian contact details</td>
<td></td>
</tr>
<tr>
<td>1.1.4</td>
<td>10th February 2021</td>
<td>Updated GSLB configuration steps</td>
<td>GSLB is now configured graphically rather than by editing configuration files</td>
<td>RJC</td>
</tr>
<tr>
<td>1.2.0</td>
<td>18th August 2021</td>
<td>Converted the document to AsciiDoc</td>
<td>Move to new documentation system</td>
<td>RJC</td>
</tr>
</tbody>
</table>
About Loadbalancer.org

Loadbalancer.org’s mission is to ensure that its clients’ businesses are never interrupted. The load balancer experts ask the right questions to get to the heart of what matters, bringing a depth of understanding to each deployment. Experience enables Loadbalancer.org engineers to design less complex, unbreakable solutions - and to provide exceptional personalized support.