1. About this Guide

This guide details the steps required to configure a load balanced NextGen Connect environment utilizing Loadbalancer.org appliances.

For more information about initial appliance deployment, network configuration and using the Web User Interface (WebUI), please also refer to the Administration Manual.

2. Loadbalancer.org Appliances Supported

All our products can be used for load balancing NextGen Connect. For full specifications of available models please refer to https://www.loadbalancer.org/products.

Some features may not be supported in all cloud platforms due to platform specific limitations, please check with Loadbalancer.org support for further details.

3. Loadbalancer.org Software Versions Supported

- V8.4.1 and later

Note

The screenshots used throughout this document aim to track the latest Loadbalancer.org software version. If using an older software version, note that the screenshots presented here may not match the WebUI exactly.

4. NextGen Connect Software Versions Supported

- NextGen Connect – all versions

5. Load Balancing NextGen Connect

NextGen Connect, formerly known as Mirth Connect, is a cross-platform interface engine used in the healthcare industry. It enables the management of information using bi-directional sending of many types of messages. Like an interpreter who translates foreign languages into the one you understand, NextGen Connect Integration Engine translates message standards into the one your system understands. Whenever a "foreign" system sends you a message, NextGen Connect Integration Engine's integration capabilities expedite the following:

- Filtering – NextGen Connect Integration Engine reads message parameters and passes the message to or stops it on its way to the transformation stage
- Transformation – NextGen Connect Integration Engine converts the incoming message standard to another standard (e.g., HL7 to XML)
- Extraction – NextGen Connect Integration Engine can "pull" data from and "push" data to a database
- Routing – NextGen Connect Integration Engine makes sure messages arrive at their assigned destinations

Ports Requirements

The following table shows the ports used by the NextGen Connect nodes. The load balancer must be configured to listen on the same ports.
<table>
<thead>
<tr>
<th>Port</th>
<th>Protocols</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>8080</td>
<td>TCP/HTTP</td>
<td>Web based access to Mirth Connect</td>
</tr>
<tr>
<td>8443</td>
<td>TCP/HTTPS</td>
<td>Secure web based access to the Mirth Connect</td>
</tr>
</tbody>
</table>

Load Balancer Deployment

When the NextGen Connect nodes are deployed with the load balancer, clients connect to the Virtual Service (VIP) on the load balancer rather than connecting directly to one of the nodes.

Note

The load balancer can be deployed as a single unit, although Loadbalancer.org recommends a clustered pair for resilience & high availability. Please refer to Configuring HA - Adding a Secondary Appliance for more details on configuring a clustered pair.

Virtual Service (VIP) Requirements

To provide load balancing for NextGen Connect nodes one VIP is required:

- **VIP 1**: NextGen-HTTP(S)

Deployment Mode

We recommend using Layer 7 as no network changes are required and SSL termination with re-encryption can be implemented. This mode offers high performance and implementation flexibility, however as Layer 7 is a reverse proxy the client source IP address is not visible at the real server. Instead, the IP address of the load balancer is visible at the real server. In order to retain the client source IP address, the load balancer inserts an X-Forwarded-For header into the load balanced traffic, which the NextGen Connect nodes can log for troubleshooting issues while seeing the true source IP address of connecting clients.

6. Loadbalancer.org Appliance – the Basics

Virtual Appliance

A fully featured, fully supported 30 day trial is available if you are conducting a PoC (Proof of Concept) deployment. The VA is currently available for VMware, Virtual Box, Hyper-V, KVM, XEN and Nutanix AHV and has been optimized for each Hypervisor. By default, the VA is allocated 2 vCPUs, 4GB of RAM and has a 20GB virtual disk.
The Virtual Appliance can be downloaded [here](#).

Note
The same download is used for the licensed product, the only difference is that a license key file (supplied by our sales team when the product is purchased) must be applied using the appliance’s WebUI.

Note
Please refer to [The Virtual Appliance - Hypervisor Deployment](#) and the ReadMe.txt text file included in the VA download for more detailed information on deploying the VA using various Hypervisors.

Note
For the VA, 4 NICs are included but only eth0 is connected by default at power up. If the other NICs are required, these should be connected using the network configuration screen within the Hypervisor.

Initial Network Configuration

After boot up, follow the instructions on the console to configure the IP address, subnet mask, default gateway, DNS and other network settings.

Important
Be sure to set a secure password for the load balancer, when prompted during the setup routine.

Accessing the WebUI

The WebUI is accessed using a web browser. By default, user authentication is based on local Apache .htaccess files. User administration tasks such as adding users and changing passwords can be performed using the WebUI menu option: *Maintenance > Passwords*.

Note
A number of compatibility issues have been found with various versions of Internet Explorer and Edge. The WebUI has been tested and verified using both Chrome & Firefox.

Note
If required, users can also be authenticated against LDAP, LDAPS, Active Directory or Radius. For more information please refer to [External Authentication](#).

1. Using a browser, access the WebUI using the following URL:

2. Log in to the WebUI:

 Username: loadbalancer
 Password: <configured-during-network-setup-wizard>

 Note
 To change the password, use the WebUI menu option: *Maintenance > Passwords*.

Once logged in, the WebUI will be displayed as shown below:
The WebUI for the VA is shown, the hardware and cloud appliances are very similar. The yellow licensing related message is platform & model dependent.

3. You'll be asked if you want to run the Setup Wizard. If you click **Accept** the Layer 7 Virtual Service configuration wizard will start. If you want to configure the appliance manually, simple click **Dismiss**.

Main Menu Options

- **System Overview** - Displays a graphical summary of all VIPs, RIPS and key appliance statistics
- **Local Configuration** - Configure local host settings such as IP address, DNS, system time etc.
- **Cluster Configuration** - Configure load balanced services such as VIPs & RIPS
- **Maintenance** - Perform maintenance tasks such as service restarts and taking backups
- **View Configuration** - Display the saved appliance configuration settings
- **Reports** - View various appliance reports & graphs
HA Clustered Pair Configuration

Loadbalancer.org recommend that load balancer appliances are deployed in pairs for high availability. In this guide a single unit is deployed first, adding a secondary unit is covered in Configuring HA - Adding a Secondary Appliance.

7. Appliance Configuration for NextGen Connect

Configuring VIP1 – NextGen-HTTPS

a) Setting up the Virtual Service (VIP)
 1. Using the WebUI, navigate to Cluster Configuration > Layer 7 – Virtual Services and click Add a new Virtual Service.
 2. Enter the following details:

 ![Layer 7 - Add a new Virtual Service](image)

 - Enter an appropriate label (name) for the VIP, e.g. NextGen-HTTPS.
 - Set the Virtual Service IP address field to the required IP address, e.g. 192.168.0.143.
 - Set the Virtual Service Ports field to 8443.
 - Set Protocol to TCP Mode.
 - Click Update.

 3. Click Modify next to the newly created VIP.
 4. Set Persistence Mode to Source IP.
 5. Set Health Checks to Negotiate HTTPS (HEAD).
 6. Under the Other section click Advanced.
 7. Under Timeout check the box.
13. Set the **Client Timeout** and **Real Server Timeout** to 5m.

14. Click **Update**.

b) Setting up the Real Servers (RIPs)

1. Using the WebUI, navigate to **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created NextGen-HTTPS VIP.

2. Enter the following details:

 ![Layer 7 Add a new Real Server - NextGen-HTTPS](image)

 - Enter an appropriate label (name) for the RIP, e.g. **NGC1**.
 - Set the **Real Server IP Address** field to the IP address of the NextGen Connect node, e.g. **192.168.0.43**.
 - Click **Update**.
 - Repeat these steps to add additional NextGen Connect nodes as real servers as required.

Finalizing the Configuration

To apply the new settings, HAProxy must be reloaded. This can be done using the button in the blue box at the top of the screen or by using the **Restart Services** menu option:

1. Using the WebUI, navigate to: **Maintenance > Restart Services**.

2. Click **Reload HAProxy**.

8. Additional Configuration Options & Settings

SSL Termination

SSL termination can be handled in the following ways:

1. On the Real Servers – aka **SSL Pass-through**.
2. On the load balancer – aka **SSL Offloading**.
3. On the load balancer with re-encryption to the backend servers – aka **SSL Bridging**.
SSL termination on the load balancer can be very CPU intensive.

By default, a self-signed certificate is used for the new SSL VIP. Certificates can be requested on the load balancer or uploaded as described in the section below. The default self-signed certificate can be regenerated if needed using the WebUI menu option: SSL Certificate and clicking the Regenerate Default Self Signed Certificate button.

The backend for the SSL VIP can be either a Layer 7 SNAT mode VIP or a Layer 4 NAT or SNAT mode VIP. Layer 4 DR mode cannot be used since stunnel acts as a proxy, and the NextGen Connect node servers see requests with a source IP address of the VIP. However, since the NextGen Connect node servers believe that they own the VIP (due to the loopback adapter configured to handle to ARP problem) they are unable to reply to stunnel.

In the context of a NextGen Connect deployment only SSL Bridging is an accepted configuration.

Force to HTTPS is not compatible with NextGen Connect nodes and therefore should be disabled.

SSL Termination on the load balancer - SSL Bridging

In this case an STunnel SSL Virtual Service is defined on the appliance and an SSL certificate is uploaded and associated to the Virtual Service. Data is encrypted from the client to the load balancer and is also encrypted from the load balancer to the backend servers as shown above.

Certificates

If you already have an SSL certificate in either PFX or PEM file format, this can be uploaded to the Load balancer using the certificate upload option as explained below in Uploading Certificates. Alternatively, you can create a Certificate Signing Request (CSR) on the load balancer and send this to your CA to create a new certificate. For more information please refer to Generating a CSR on the Load Balancer.

Uploading Certificates

If you already have a certificate in either PEM or PFX format, this can be uploaded to the load balancer.
To upload a Certificate:

1. Using the WebUI, navigate to: Cluster Configuration > SSL Certificates.

2. Click Add a new SSL Certificate & select Upload prepared PEM/PFX file.

3. Enter a suitable Label (name) for the certificate, e.g. Cert1.

4. Browse to and select the certificate file to upload (PEM or PFX format).

5. Enter the password if applicable.

6. Click Upload Certificate, if successful, a message similar to the following will be displayed:

 Information: cert1 SSL Certificate uploaded successfully.

Note: It's important to back up all of your certificates. This can be done via the WebUI from Maintenance > Backup & Restore > Download SSL Certificates.

Configuring SSL Termination on the Load Balancer

To configure SSL termination for NextGen:

1. Configure a layer 7 HTTP mode VIP to handle HTTP traffic

2. Configure SSL termination to handle HTTPS traffic

1) Configuring a Layer 7 HTTP mode VIP

a) Setting up the Virtual Service (VIP)

1. Using the WebUI, navigate to Cluster Configuration > Layer 7 – Virtual Services and click Add a new Virtual Service.

2. Enter the following details:
3. Enter an appropriate label (name) for the VIP, e.g. NextGen-HTTP.
4. Set the Virtual Service IP address field to the required IP address, e.g. 192.168.0.200.
5. Set the Virtual Service Ports field to 8080.
7. Click Update.
8. Click Modify next to the newly created VIP.
9. Set Persistence Mode to HTTP Cookie and Source IP.
10. Set Health Checks to Negotiate HTTPS (HEAD).
11. Click Advanced.
12. Set Check Port to 8443.
14. Under the Other section click Advanced.
15. Under Timeout check the box.
16. Set the Client Timeout and Real Server Timeout to 5m.
17. Click Update.

b) Setting up the Real Servers (RIPs)
1. Using the WebUI, navigate to Cluster Configuration > Layer 7 – Real Servers and click Add a new Real Server next to the newly created NextGen-HTTP VIP.
2. Enter the following details:
3. Enter an appropriate label (name) for the RIP, e.g. NGC1.
4. Set the **Real Server IP Address** field to the IP address of the NextGen Connect node.
5. Click **Update**.
6. Repeat these steps to add additional NextGen Connect nodes as real servers as required.

2) Configure SSL termination

1. Using the WebUI, navigate to **Cluster Configuration > SSL Termination** and click **Add a new Virtual Service**.

2. Set **Associated Virtual Service** to the appropriate VIP, e.g. **NextGen-HTTP**. This will automatically fill in the label as the VIP name with SSL inserted in front of the VIP name e.g. **SSL-NextGen-HTTP**.
The Associated Virtual Service drop-down is populated with all single port, standard (i.e. non-manual) Layer 7 VIPs available on the load balancer. Using a Layer 7 VIP for the backend is the recommended method although as mentioned earlier, Layer 4 NAT mode and layer 4 SNAT mode VIPs can also be used if required. To forward traffic from the SSL VIP to these type of VIPs, you’ll need to set Associated Virtual Service to **Custom**, then configure the IP address & port of the required VIP.

3. Set **Virtual Service Port** to **8443**.
4. Leave **SSL operation Mode** set to **High Security**.
5. Select the required certificate from the **SSL Certificate** drop-down.
6. Click **Update**.

Once configured, HTTP traffic will be load balanced by the Layer 7 SNAT mode VIP and HTTPS traffic will be terminated by the SSL VIP, then passed on to the Layer 7 SNAT mode VIP as unencrypted HTTP for the use of the HTTP Cookie and Source IP persistence method. The connection is then re-encrypted and forwarded to the real server.

Finalizing the Configuration

To apply the new settings, HAProxy and STunnel must both be reloaded. This can be done using the buttons in the blue box at the top of the screen or by using the **Restart Services** menu option:

1. Using the WebUI, navigate to: **Maintenance > Restart Services**.
2. Click **Reload HAProxy**.
3. Click **Reload STunnel**.

9. Testing & Verification

Note For additional general guidance please also refer to Testing Load Balanced Services.

Using System Overview

The System Overview can be viewed in the WebUI. It shows a graphical view of all VIPs & RIPs (i.e. NextGen-HTTP) and shows the state/health of each server as well as the state of the each cluster as a whole. The example below shows that all NextGen Connect nodes are healthy and available to accept connections.
10. Technical Support
For more details about configuring the appliance and assistance with designing your deployment please don’t hesitate to contact the support team using the following email address: support@loadbalancer.org.

11. Further Documentation

12. Conclusion
Loadbalancer.org appliances provide a very cost effective solution for highly available load balanced NextGen Connect environments.
13. Appendix

Configuring HA - Adding a Secondary Appliance

Our recommended configuration is to use a clustered HA pair of load balancers to provide a highly available and resilient load balancing solution.

We recommend that the Primary appliance should be configured first, then the Secondary should be added. Once the Primary and Secondary are paired, all load balanced services configured on the Primary are automatically replicated to the Secondary over the network using SSH/SCP.

For Enterprise Azure, the HA pair should be configured first. In Azure, when creating a VIP using an HA pair, 2 private IPs must be specified – one for the VIP when it’s active on the Primary and one for the VIP when it’s active on the Secondary. Configuring the HA pair first, enables both IPs to be specified when the VIP is created.

The clustered HA pair uses Heartbeat to determine the state of the other appliance. Should the active device (normally the Primary) suffer a failure, the passive device (normally the Secondary) will take over.

A number of settings are not replicated as part of the Primary/Secondary pairing process and therefore must be manually configured on the Secondary appliance. These are listed by WebUI menu option in the table below:

<table>
<thead>
<tr>
<th>WebUI Main Menu Option</th>
<th>Sub Menu Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Configuration</td>
<td>Hostname & DNS</td>
<td>Hostname and DNS settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Network Interface Configuration</td>
<td>All network settings including IP address(es), bonding configuration and VLANs</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Routing</td>
<td>Routing configuration including default gateways and static routes</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>System Date & time</td>
<td>All time and date related settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Physical – Advanced Configuration</td>
<td>Various settings including Internet Proxy, Management Gateway, Firewall connection tracking table size, NIC offloading, SMTP relay, logging and Syslog Server</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Security</td>
<td>Appliance security settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>SNMP Configuration</td>
<td>Appliance SNMP settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Graphing</td>
<td>Appliance graphing settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>License Key</td>
<td>Appliance licensing</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Software Updates</td>
<td>Appliance software update management</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Script</td>
<td>Appliance firewall (iptables) configuration</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Lockdown Wizard</td>
<td>Appliance management lockdown settings</td>
</tr>
</tbody>
</table>

To add a Secondary node - i.e. create a highly available clustered pair:
1. Deploy a second appliance that will be the Secondary and configure initial network settings.

2. Using the WebUI on the Primary appliance, navigate to: *Cluster Configuration > High-Availability Configuration.*

3. Specify the IP address and the *loadbalancer* user's password for the Secondary (peer) appliance as shown above.

4. Click *Add new node.*

5. The pairing process now commences as shown below:

6. Once complete, the following will be displayed on the Primary appliance:
7. To finalize the configuration, restart heartbeat and any other services as prompted in the blue message box at the top of the screen.

Note
Clicking the **Restart Heartbeat** button on the Primary appliance will also automatically restart heartbeat on the Secondary appliance.

Note
For more details on configuring HA with 2 appliances, please refer to **Appliance Clustering for HA**.
14. Document Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Change</th>
<th>Reason for Change</th>
<th>Changed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0</td>
<td>24 April 2020</td>
<td>Initial document creation</td>
<td></td>
<td>IBG</td>
</tr>
<tr>
<td>1.0.1</td>
<td>1 September 2020</td>
<td>New title page</td>
<td>Branding update</td>
<td>AH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Canadian contact details</td>
<td>Change to Canadian contact details</td>
<td></td>
</tr>
<tr>
<td>1.1.0</td>
<td>1 January 2022</td>
<td>Converted the document to AsciiDoc</td>
<td>Move to new documentation system</td>
<td>AH, RJC, ZAC</td>
</tr>
<tr>
<td>1.1.1</td>
<td>26 April 2022</td>
<td>Updated SSL related content to reflect latest software version</td>
<td>New software release</td>
<td>RJC</td>
</tr>
</tbody>
</table>
About Loadbalancer.org

Loadbalancer.org's mission is to ensure that its clients' businesses are never interrupted. The load balancer experts ask the right questions to get to the heart of what matters, bringing a depth of understanding to each deployment. Experience enables Loadbalancer.org engineers to design less complex, unbreakable solutions - and to provide exceptional personalized support.

United Kingdom
Loadbalancer.org Ltd.
Compass House, North Harbour Business Park, Portsmouth, PO6 4PS
UK:+44 (0) 330 380 1064
sales@loadbalancer.org
support@loadbalancer.org

Canada
Loadbalancer.org Appliances Ltd.
300-422 Richards Street, Vancouver,
BC, V6B 2Z4, Canada
TEL:+1 866 998 0508
sales@loadbalancer.org
support@loadbalancer.org

United States
Loadbalancer.org, Inc.
4550 Linden Hill Road, Suite 201
Wilmington, DE 19808, USA
TEL: +1 833.274.2566
sales@loadbalancer.org
support@loadbalancer.org

Germany
Loadbalancer.org GmbH
Tengstraße 2780798,
München, Germany
TEL: +49 (0)89 2000 2179
sales@loadbalancer.org
support@loadbalancer.org

© Copyright Loadbalancer.org • www.loadbalancer.org