Table of Contents

1. About this Guide ... 4
2. Loadbalancer.org Appliances Supported 4
3. Software Versions Supported ... 4
 3.1. Loadbalancer.org Appliance ... 4
 3.2. Panzura CloudFS ... 4
4. Panzura CloudFS .. 4
5. Load Balancing Panzura CloudFS .. 5
 5.1. Load Balancing & HA Requirements 5
 5.2. Persistence (aka Server Affinity) 5
 5.3. Virtual Service (VIP) Requirements 5
 5.4. Port Requirements .. 5
6. Deployment Concept .. 5
7. Load Balancer Deployment Methods 6
 7.1. Layer 4 NAT Mode .. 6
 7.2. Layer 7 SNAT Mode .. 9
 7.3. Our Recommendation .. 10
8. Configuring Panzura CloudFS for Load Balancing 10
 8.1. Configuring for Layer 4 NAT Mode 10
 8.2. Configuring for Layer 7 SNAT Mode (recommended) 10
9. Loadbalancer.org Appliance – the Basics 10
 9.1. Virtual Appliance ... 10
 9.2. Initial Network Configuration 11
 9.3. Accessing the Appliance WebUI 11
 Main Menu Options .. 12
 9.4. Appliance Software Update ... 13
 Determining the Current Software Version 13
 Checking for Updates using Online Update 13
 Using Offline Update ... 13
 9.5. Ports Used by the Appliance .. 14
 9.6. HA Clustered Pair Configuration 15
10. Appliance Configuration for Panzura CloudFS – Using Layer 4 NAT Mode .. 15
 10.1. Configuring the SMB Virtual Service (VIP) 15
 10.2. Defining the Real Servers (RIPs) 16
 10.3. Configuring the NFS Virtual Service (VIP) 16
 10.4. Defining the Real Servers (RIPs) 17
 10.5. Finalizing the Configuration 18
 Creating a floating IP for the Panzura CloudFS gateway address 18
 11.1. Configuring the SMB Virtual Service (VIP) 19
 11.2. Defining the Real Servers (RIPs) 19
 11.3. Configuring the NFS Virtual Service (VIP) 20
 11.4. Defining the Real Servers (RIPs) 21
 11.5. Finalizing the Configuration 21
12. Testing & Verification ... 21
 12.1. Using System Overview ... 21
13. Technical Support ... 22
14. Further Documentation ... 22
15. Appendix .. 23
1. About this Guide

This guide details the steps required to configure a load balanced Panzura CloudFS environment utilizing Loadbalancer.org appliances. It covers the configuration of the load balancers and also any Panzura CloudFS configuration changes that are required to enable load balancing.

For more information about initial appliance deployment, network configuration and using the Web User Interface (WebUI), please also refer to the Administration Manual.

2. Loadbalancer.org Appliances Supported

All our products can be used for load balancing Panzura CloudFS. For full specifications of available models please refer to https://www.loadbalancer.org/products. Some features may not be supported in all cloud platforms due to platform specific limitations, please check with Loadbalancer.org support for further details.

3. Software Versions Supported

3.1. Loadbalancer.org Appliance

- V8.3.8 and later

Note: The screenshots used throughout this document aim to track the latest Loadbalancer.org software version. If using an older software version, note that the screenshots presented here may not match the WebUI exactly.

3.2. Panzura CloudFS

- V7.1.9x and later

4. Panzura CloudFS

The Panzura Cloud File System (PCFS) is a distributed cloud file system used for storing application data that spans the globe, granting users in various geographical locations fast and consistent access to that data.

Panzura CloudFS capabilities include:

- Providing instances at each site that connect to each other and to a master data source. These instances can be deployed as either a virtual machine (VM), or as an in-cloud instance
- Frequently used files are cached at each office for fast access
- Files are kept constantly synchronized across all sites
- Users can access the same file at the same time
- The master copy is kept synchronized with the public or private cloud provider of your choice
- Byte-range global locking technology protects files from being accidentally overwritten
5. Load Balancing Panzura CloudFS

5.1. Load Balancing & HA Requirements
The function of the load balancer is to distribute inbound connections across a cluster of Panzura CloudFS nodes, to provide a highly available and scalable service. Two virtual services are used to load balance the different aspects of Panzura CloudFS.

5.2. Persistence (aka Server Affinity)
Persistence is not needed as the Panzura CloudFS Master and Subordinates synchronise configuration between themselves.

5.3. Virtual Service (VIP) Requirements
To provide load balancing for Panzura CloudFS, the following VIPs are required:

- **SMB**: for Windows print and file sharing cluster
- **NFS**: Network file system cluster

5.4. Port Requirements
The following table shows the ports that are load balanced:

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocols</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>TCP/RPC</td>
<td>Remote Procedure Call / portmap traffic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(RPC)</td>
</tr>
<tr>
<td>445</td>
<td>TCP/SMB</td>
<td>Windows File and print sharing</td>
</tr>
<tr>
<td>2049</td>
<td>TCP/NFS</td>
<td>NFS daemon process (nfsd)</td>
</tr>
</tbody>
</table>

6. Deployment Concept
The load balancer can be deployed as a single unit, although Loadbalancer.org recommends a clustered pair for resilience & high availability. Please refer to Configuring HA - Adding a Secondary Appliance for more details on configuring a clustered pair.

7. Load Balancer Deployment Methods

The load balancer can be deployed in 4 fundamental ways: **Layer 4 DR mode**, **Layer 4 NAT mode**, **Layer 4 SNAT mode**, and **Layer 7 SNAT mode**.

For Panzura CloudFS, using either layer 4 NAT mode or layer 7 SNAT mode is recommended. **Layer 4 DR mode is not recommended** due to operating system restrictions on the Panzura CloudFS nodes.

These modes are described below and are used for the configurations presented in this guide. For configuring using NAT mode please refer to Appliance Configuration for Panzura CloudFS – Using Layer 4 NAT Mode, and for configuring using layer 7 SNAT mode refer to Appliance Configuration for Panzura CloudFS – Using Layer 7 SNAT Mode.

7.1. Layer 4 NAT Mode

Layer 4 NAT mode is a high performance solution, although not as fast as layer 4 DR mode. This is because real server responses must flow back to the client via the load balancer rather than directly as with DR mode.
The load balancer translates all requests from the Virtual Service to the Real Servers.

NAT mode can be deployed in the following ways:

- **Two-arm (using 2 Interfaces)** (as shown above) - Here, 2 subnets are used. The VIP is located in one subnet and the load balanced Real Servers are located in the other. The load balancer requires 2 interfaces, one in each subnet.

- Normally **eth0** is used for the internal network and **eth1** is used for the external network although this is optional. Any interface can be used for any purpose.

- If the Real Servers require Internet access, **Autonat** should be enabled using the WebUI menu option: **Cluster Configuration > Layer 4 - Advanced Configuration**, the external interface should be selected.

- The default gateway on the Real Servers must be set to be an IP address on the load balancer.

- For an HA clustered pair, a floating IP should be added to the load balancer and used as the Real Server's default gateway. This ensures that the IP address can 'float' (move) between Primary and Secondary appliances.

- Clients can be located in the same subnet as the VIP or any remote subnet provided they can route to the VIP.

- **One-arm (using 1 Interface)** - Here, the VIP is brought up in the same subnet as the Real Servers.
To support remote clients, the default gateway on the Real Servers must be an IP address on the load balancer and routing on the load balancer must be configured so that return traffic is routed back via the router.

For an HA clustered pair, a floating IP should be added to the load balancer and used as the Real Server's default gateway. This ensures that the IP address can 'float' (move) between Primary and Secondary appliances.

To support local clients, return traffic would normally be sent directly to the client bypassing the load balancer which would break NAT mode. To address this, the routing table on the Real Servers must be modified to force return traffic to go via the load balancer. For more information please refer to One-Arm (Single Subnet) NAT Mode.

If you want Real Servers to be accessible on their own IP address for non-load balanced services, e.g. RDP, you will need to setup individual SNAT and DNAT firewall script rules for each Real Server or add additional VIPs for this.

Port translation is possible with Layer 4 NAT mode, e.g. VIP:80 → RIP:8080 is supported.

NAT mode is transparent, i.e. the Real Servers will see the source IP address of the client.

NAT Mode Packet re-Writing

In NAT mode, the inbound destination IP address is changed by the load balancer from the Virtual Service IP address (VIP) to the Real Server. For outbound replies the load balancer changes the source IP address of the Real Server to be the Virtual Services IP address.

The following table shows an example NAT mode setup:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>VIP</th>
<th>Port</th>
<th>RIP</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>10.0.0.20</td>
<td>80</td>
<td>192.168.1.50</td>
<td>80</td>
</tr>
</tbody>
</table>

In this simple example all traffic destined for IP address 10.0.0.20 on port 80 is load-balanced to the real IP address 192.168.1.50 on port 80.

Packet rewriting works as follows:

1) The incoming packet for the web server has source and destination addresses as:
2) The packet is rewritten and forwarded to the backend server as:

| Source | x.x.x.x:34567 | Destination | 10.0.0.20:80 |

3) Replies return to the load balancer as:

| Source | 192.168.1.50:80 | Destination | x.x.x.x:34567 |

4) The packet is written back to the VIP address and returned to the client as:

| Source | 10.0.0.20:80 | Destination | x.x.x.x:34567 |

7.2. Layer 7 SNAT Mode

Layer 7 SNAT mode uses a proxy (HAProxy) at the application layer. Inbound requests are terminated on the load balancer and HAProxy generates a new corresponding request to the chosen Real Server. As a result, Layer 7 is typically not as fast as the Layer 4 methods. Layer 7 is typically chosen when either enhanced options such as SSL termination, cookie based persistence, URL rewriting, header insertion/deletion etc. are required, or when the network topology prohibits the use of the layer 4 methods.

- Because layer 7 SNAT mode is a full proxy, any server in the cluster can be on any accessible subnet including across the Internet or WAN.

- Layer 7 SNAT mode is not transparent by default, i.e. the Real Servers will not see the source IP address of the client, they will see the load balancer’s own IP address by default, or any other local appliance IP address if preferred (e.g. the VIP address). This can be configured per layer 7 VIP. If required, the load balancer can be configured to provide the actual client IP address to the Real Servers in 2 ways. Either by inserting a header that contains the client’s source IP address, or by modifying the Source Address field of the IP
packets and replacing the IP address of the load balancer with the IP address of the client. For more information on these methods please refer to Transparency at Layer 7.

- Layer 7 SNAT mode can be deployed using either a one-arm or two-arm configuration. For two-arm deployments, `eth0` is normally used for the internal network and `eth1` is used for the external network although this is not mandatory.
- Requires no mode-specific configuration changes to the load balanced Real Servers.
- Port translation is possible with Layer 7 SNAT mode, e.g. VIP:80 → RIP:8080 is supported.
- You should not use the same RIP:PORT combination for layer 7 SNAT mode VIPs and layer 4 SNAT mode VIPs because the required firewall rules conflict.

7.3. Our Recommendation

Where possible, we recommend that Layer 7 SNAT mode is used. This mode offers great performance with minimal to no changes required on the real servers and can be deployed in one-arm or two-arm mode. HAProxy is a high performance solution, but since it operates as a full proxy, it cannot perform as fast as the layer 4 solutions. Layer 7 SNAT mode is non-transparent by default, i.e. the Real Servers will see the source IP address of the load balancer.

8. Configuring Panzura CloudFS for Load Balancing

8.1. Configuring for Layer 4 NAT Mode

For layer 4 NAT mode to work, **every Panzura CloudFS node** must be configured so that its gateway points to a floating IP on the load balancer(s).

8.2. Configuring for Layer 7 SNAT Mode (recommended)

No changes are required on the Panzura CloudFS nodes for layer 7 SNAT mode.

9. Loadbalancer.org Appliance – the Basics

9.1. Virtual Appliance

A fully featured, fully supported 30 day trial is available if you are conducting a PoC (Proof of Concept) deployment. The VA is currently available for VMware, Virtual Box, Hyper-V, KVM, XEN and Nutanix AHV and has been optimized for each Hypervisor. By default, the VA is allocated 2 vCPUs, 4GB of RAM and has a 20GB virtual disk. The Virtual Appliance can be downloaded [here](#).

[Note]

The same download is used for the licensed product, the only difference is that a license key file (supplied by our sales team when the product is purchased) must be applied using the appliance’s WebUI.

[Note]

Please refer to Virtual Appliance Installation and the ReadMe.txt text file included in the VA download for additional information on deploying the VA using the various Hypervisors.
The VA has 4 network adapters. For VMware only the first adapter (eth0) is connected by default. For HyperV, KVM, XEN and Nutanix AHV all adapters are disconnected by default. Use the network configuration screen within the Hypervisor to connect the required adapters.

9.2. Initial Network Configuration

After boot up, follow the instructions on the appliance console to configure the management IP address, subnet mask, default gateway, DNS Server and other network settings.

Important Be sure to set a secure password for the load balancer, when prompted during the setup routine.

9.3. Accessing the Appliance WebUI

The WebUI is accessed using a web browser. By default, users are authenticated using Apache authentication. Users can also be authenticated against LDAP, LDAPS, Active Directory or Radius - for more information, please refer to External Authentication.

Note There are certain differences when accessing the WebUI for the cloud appliances. For details, please refer to the relevant Quick Start / Configuration Guide.

Note A number of compatibility issues have been found with various versions of Microsoft Internet Explorer and Edge. The WebUI has been tested and verified using both Chrome & Firefox.

1. Using a browser, navigate to the following URL:

 Note You’ll receive a warning about the WebUI’s certificate. This is due to the default self signed certificate that is used. If preferred, you can upload your own certificate - for more information, please refer to Appliance Security Features.

2. Log in to the WebUI using the following credentials:

 Username: loadbalancer
 Password: <configured-during-network-setup-wizard>

 Note To change the password, use the WebUI menu option: Maintenance > Passwords.

Once logged in, the WebUI will be displayed as shown below:
3. You’ll be asked if you want to run the Setup Wizard. Click **Dismiss** if you’re following a guide or want to configure the appliance manually. Click **Accept** to start the Setup Wizard.

Note

The Setup Wizard can only be used to configure Layer 7 services.

Main Menu Options

- **System Overview** - Displays a graphical summary of all VIPs, RIPS and key appliance statistics
- **Local Configuration** - Configure local host settings such as IP address, DNS, system time etc.
- **Cluster Configuration** - Configure load balanced services such as VIPs & RIPS
- **Maintenance** - Perform maintenance tasks such as service restarts and taking backups
- **View Configuration** - Display the saved appliance configuration settings
- **Reports** - View various appliance reports & graphs
- **Logs** - View various appliance logs
- **Support** - Create a support download, contact the support team & access useful links
9.4. Appliance Software Update

To ensure that the appliance(s) are running the latest software version, we recommend a software update check is performed.

Determining the Current Software Version

The software version is displayed at the bottom of the WebUI as shown in the example below:

Checking for Updates using Online Update

1. Using the WebUI, navigate to: Maintenance > Software Update.
2. Select Online Update.
3. If the latest version is already installed, a message similar to the following will be displayed:

 Information: Version v8.9.0 is the current release. No updates are available

4. If an update is available, you'll be presented with a list of new features, improvements, bug fixes and security related updates.
5. Click Online Update to start the update process.

 Note: Do not navigate away whilst the update is ongoing, this may cause the update to fail.

6. Once complete (the update can take several minutes depending on download speed and upgrade version) the following message will be displayed:

 Information: Update completed successfully.

7. If services need to be reloaded/restarted or the appliance needs a full restart, you'll be prompted accordingly.

Using Offline Update

If the load balancer does not have access to the Internet, offline update can be used.
To perform an offline update:

1. Using the WebUI, navigate to: Maintenance > Software Update.
2. Select Offline Update.
3. The following screen will be displayed:

Software Update

Offline Update

The following steps will lead you through offline update.

1. Contact support@loadbalancer.org support to obtain the offline update archive and checksum.
2. Save the archive and checksum to your local machine.
3. Select the archive and checksum files in the upload form below.
4. Click Upload and Install to begin the update process.

4. Select the Archive and Checksum files.
5. Click Upload and Install.
6. If services need to be reloaded/restarted or the appliance needs a full restart, you'll be prompted accordingly.

9.5. Ports Used by the Appliance

By default, the appliance uses the following TCP & UDP ports:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Port</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>22</td>
<td>SSH</td>
</tr>
<tr>
<td>TCP & UDP</td>
<td>53</td>
<td>DNS</td>
</tr>
<tr>
<td>TCP & UDP</td>
<td>123</td>
<td>NTP</td>
</tr>
<tr>
<td>TCP & UDP</td>
<td>161</td>
<td>SNMP</td>
</tr>
<tr>
<td>UDP</td>
<td>6694</td>
<td>Heartbeat between Primary & Secondary appliances in HA mode</td>
</tr>
<tr>
<td>TCP</td>
<td>7778</td>
<td>HAProxy persistence table replication</td>
</tr>
<tr>
<td>TCP</td>
<td>9080</td>
<td>WebUI - HTTP (disabled by default)</td>
</tr>
<tr>
<td>TCP</td>
<td>9081</td>
<td>Nginx fallback page</td>
</tr>
<tr>
<td>TCP</td>
<td>9443</td>
<td>WebUI - HTTPS</td>
</tr>
</tbody>
</table>
9.6. HA Clustered Pair Configuration

Loadbalancer.org recommend that load balancer appliances are deployed in pairs for high availability. In this guide a single unit is deployed first, adding a secondary unit is covered in Configuring HA - Adding a Secondary Appliance.

10. Appliance Configuration for Panzura CloudFS – Using Layer 4 NAT Mode

10.1. Configuring the SMB Virtual Service (VIP)

1. Using the web user interface, navigate to Cluster Configuration > Layer 4 – Virtual Services and click on Add a new Virtual Service.
2. Define the Label for the virtual service as required, e.g. Panzura-SMB.
3. Set the Virtual Service IP Address field to the required IP address, e.g. 192.168.86.140.
4. Set the Ports field to 445.
5. Set the Protocol to TCP.
6. Change the Forwarding Method to NAT.
7. Click Update to create the virtual service.

8. Click Modify next to the newly created VIP.
9. Ensure that the Persistence Enable checkbox is unchecked.
10. Set the Health Checks Check Type to Connect to port.
11. Set the Check Port to 445.
12. Click Update.

10.2. Defining the Real Servers (RIPs)
1. Using the web user interface, navigate to Cluster Configuration > Layer 4 – Real Servers and click on Add a new Real Server next to the newly created VIP.
2. Define the Label for the real server as required, e.g. Panzura1.
3. Set the Real Server IP Address field to the required IP address, e.g. 172.24.11.138.
4. Click Update.
5. Repeat these steps to add additional Panzura servers as required.

10.3. Configuring the NFS Virtual Service (VIP)
1. Using the web user interface, navigate to Cluster Configuration > Layer 4 – Virtual Services and click on Add a new Virtual Service.
2. Define the Label for the virtual service as required, e.g. Panzura-NFS.
3. Set the Virtual Service IP Address field to the required IP address, e.g. 192.168.86.140.
4. Set the Ports field to 111, 2049.
5. Set the Protocol to TCP.
6. Change the Forwarding Method to NAT.
7. Click Update to create the virtual service.
8. Click **Modify** next to the newly created VIP.

9. Ensure that the **Persistence Enable** checkbox is unchecked.

10. Set the **Health Checks Check Type** to **Connect to port**.

11. Set the **Check Port** to **2049**.

12. Click **Update**.

10.4. Defining the Real Servers (RIPs)

1. Using the web user interface, navigate to **Cluster Configuration > Layer 4 – Real Servers** and click on **Add a new Real Server** next to the newly created VIP.

2. Define the **Label** for the real server as required, e.g. **Panzura1**.

3. Set the **Real Server IP Address** field to the required IP address, e.g. **172.24.11.138**.

4. Click **Update**.

5. Repeat these steps to add additional Panzura servers as required.
10.5. Finalizing the Configuration

For layer 4 NAT mode to work every Panzura CloudFS node must be configured so that its gateway points to a floating IP of the load balancer.

Creating a floating IP for the Panzura CloudFS gateway address

1. Using the web user interface, navigate to *Cluster Configuration > Floating IPs*.

2. Specify the new floating IP.

3. Click *Add Floating IP*.

Note

When using a clustered pair, ensure that the Secondary also has a static IP address assigned that’s in the same subnet as the floating IP being added. Failure to do so will result in heartbeat issues during a failover.

Note

Floating IPs are not deleted automatically when Virtual Services are removed or the IP address is changed, this must be done manually.

11.1. Configuring the SMB Virtual Service (VIP)

1. Using the web user interface, navigate to Cluster Configuration > Layer 7 – Virtual Services and click on Add a new Virtual Service.
2. Define the Label for the virtual service as required, e.g. Panzura-SMB.
3. Set the Virtual Service IP Address field to the required IP address, e.g. 192.168.85.140.
4. Set the Ports field to 445.
5. Set the Layer 7 Protocol to TCP Mode.
6. Click Update to create the virtual service.

7. Click Modify next to the newly created VIP.
8. Set Persistence Mode to None.
9. Set Health Checks to Connect to port.
10. In the Other section click Advanced to expand the menu.
11. Check the Timeout checkbox.
12. Set Client Timeout to 5m (the m is for minutes).
13. Set Real Server Timeout to 5m.
14. Click Update.

11.2. Defining the Real Servers (RIPs)

1. Using the web user interface, navigate to Cluster Configuration > Layer 7 – Real Servers and click on Add a new Real Server next to the newly created VIP.
2. Define the **Label** for the real server as required, e.g. **Panzura1**.

3. Set the **Real Server IP Address** field to the required IP address, e.g. **172.24.11.138**.

4. Click **Update**.

5. Repeat these steps to add additional Panzura CloudFS nodes as real servers as required.

11.3. Configuring the NFS Virtual Service (VIP)

1. Using the web user interface, navigate to **Cluster Configuration > Layer 7 – Virtual Services** and click on **Add a new Virtual Service**.

2. Define the **Label** for the virtual service as required, e.g. **Panzura-NFS**.

3. Set the **Virtual Service IP Address** field to the required IP address, e.g. **192.168.85.140**.

4. Set the **Ports** field to **111, 2049**.

5. Set the **Layer 7 Protocol** to **TCP Mode**.

6. Click **Update** to create the virtual service.

7. Click **Modify** next to the newly created VIP.
8. Set **Persistence Mode** to **None**.

9. Set **Health Checks** to **Connect to port**.

10. In the **Other** section click **Advanced** to expand the menu.

11. Check the **Timeout** checkbox.

12. Set **Client Timeout** to **5m** (the **m** is for minutes).

13. Set **Real Server Timeout** to **5m**.

14. Click **Update**.

11.4. Defining the Real Servers (RIPs)

1. Using the web user interface, navigate to **Cluster Configuration > Layer 7 – Real Servers** and click on **Add a new Real Server** next to the newly created VIP.

2. Define the **Label** for the real server as required, e.g. **Panzura1**.

3. Set the **Real Server IP Address** field to the required IP address, e.g. **172.24.11.138**.

4. Click **Update**.

5. Repeat these steps to add additional Panzura CloudFS nodes as real servers as required.

11.5. Finalizing the Configuration

To apply the new settings, HAProxy must be reloaded. This can be done using the button in the “Commit changes” box at the top of the screen or by using the **Restart Services** menu option:

1. Using the WebUI, navigate to: **Maintenance > Restart Services**.

2. Click **Reload HAProxy**.

12. Testing & Verification

For additional guidance on diagnosing and resolving any issues you may have, please also refer to **Diagnostics & Troubleshooting**.
12.1. Using System Overview
The System Overview can be viewed in the WebUI. It shows a graphical view of all VIPs & RPs (i.e. the Panzura CloudFS nodes) and shows the state/health of each server as well as the state of the cluster as a whole. The example below shows that all three HyperFile nodes are healthy and available to accept connections:

![System Overview](image)

13. Technical Support
For more details about configuring the appliance and assistance with designing your deployment please don’t hesitate to contact the support team using the following email address: support@loadbalancer.org.

14. Further Documentation
For additional information, please refer to the Administration Manual.
15. Appendix

15.1. Configuring HA - Adding a Secondary Appliance

Our recommended configuration is to use a clustered HA pair of load balancers to provide a highly available and resilient load balancing solution.

We recommend that the Primary appliance is configured first and then the Secondary should be added. Once the Primary and Secondary are paired, all load balanced services configured on the Primary are automatically replicated to the Secondary over the network using SSH/SCP.

For Enterprise Azure, the HA pair should be configured first. In Azure, when creating a VIP using an HA pair, 2 private IPs must be specified – one for the VIP when it’s active on the Primary and one for the VIP when it’s active on the Secondary. Configuring the HA pair first, enables both IPs to be specified when the VIP is created.

The clustered HA pair uses Heartbeat to determine the state of the other appliance. Should the active device (normally the Primary) suffer a failure, the passive device (normally the Secondary) will take over.

Non-Replicated Settings

A number of settings are not replicated as part of the Primary/Secondary pairing process and therefore must be manually configured on the Secondary appliance. These are listed by WebUI menu option in the table below:

<table>
<thead>
<tr>
<th>WebUI Main Menu Option</th>
<th>Sub Menu Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Configuration</td>
<td>Hostname & DNS</td>
<td>Hostname and DNS settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Network Interface Configuration</td>
<td>All network settings including IP address(es), bonding configuration and VLANs</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Routing</td>
<td>Routing configuration including default gateways and static routes</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>System Date & time</td>
<td>All time and date related settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Physical – Advanced Configuration</td>
<td>Various settings including Internet Proxy, Management Gateway, Firewall connection tracking table size, NIC offloading, SMTP relay, logging and Syslog Server</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Security</td>
<td>Appliance security settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>SNMP Configuration</td>
<td>Appliance SNMP settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Graphing</td>
<td>Appliance graphing settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>License Key</td>
<td>Appliance licensing</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Software Updates</td>
<td>Appliance software update management</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Script</td>
<td>Appliance firewall (iptables) configuration</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Lockdown Wizard</td>
<td>Appliance management lockdown settings</td>
</tr>
</tbody>
</table>
Adding a Secondary Appliance - Create an HA Clustered Pair

1. Deploy a second appliance that will be the Secondary and configure initial network settings.
2. Using the WebUI on the Primary appliance, navigate to: **Cluster Configuration > High-Availability Configuration**.

![Create a Clustered Pair](image)

3. Specify the IP address and the *loadbalancer* user’s password for the Secondary (peer) appliance as shown in the example above.
4. Click **Add new node**.
5. The pairing process now commences as shown below:

![Create a Clustered Pair](image)

6. Once complete, the following will be displayed on the Primary appliance:
7. To finalize the configuration, restart heartbeat and any other services as prompted in the "Commit changes" message box at the top of the screen.

Note

Clicking the **Restart Heartbeat** button on the Primary appliance will also automatically restart heartbeat on the Secondary appliance.

Note

For more details on configuring HA with 2 appliances, please refer to [Appliance Clustering for HA](#).

Note

For details on testing and verifying HA, please refer to [Clustered Pair Diagnostics](#).
16. Document Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Change</th>
<th>Reason for Change</th>
<th>Changed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0</td>
<td>8 November 2019</td>
<td>Initial version</td>
<td></td>
<td>IG</td>
</tr>
<tr>
<td>1.0.1</td>
<td>11 December 2019</td>
<td>Changed some instructions based on feedback from Panzura</td>
<td>Required updates</td>
<td>IG</td>
</tr>
<tr>
<td>1.0.2</td>
<td>2 September 2020</td>
<td>New title page</td>
<td>Branding update</td>
<td>AH</td>
</tr>
<tr>
<td>1.0.2</td>
<td>2 September 2020</td>
<td>Updated Canadian contact details</td>
<td>Change to Canadian contact details</td>
<td>AH</td>
</tr>
<tr>
<td>1.1.0</td>
<td>1 November 2021</td>
<td>Converted the document to AsciiDoc</td>
<td>Move to new documentation system</td>
<td>AH, RJC, ZAC</td>
</tr>
<tr>
<td>1.1.1</td>
<td>28 September 2022</td>
<td>Updated layer 7 VIP and RIP creation screenshots</td>
<td>Reflect changes in the web user interface</td>
<td>AH</td>
</tr>
<tr>
<td>1.1.2</td>
<td>5 January 2023</td>
<td>Combined software version information into one section</td>
<td>Housekeeping across all documentation</td>
<td>AH</td>
</tr>
<tr>
<td>1.1.2</td>
<td>5 January 2023</td>
<td>Added one level of section numbering</td>
<td></td>
<td>AH</td>
</tr>
<tr>
<td>1.1.2</td>
<td>5 January 2023</td>
<td>Added software update instructions</td>
<td></td>
<td>AH</td>
</tr>
<tr>
<td>1.1.2</td>
<td>5 January 2023</td>
<td>Added table of ports used by the appliance</td>
<td></td>
<td>AH</td>
</tr>
<tr>
<td>1.1.2</td>
<td>5 January 2023</td>
<td>Reworded ‘Further Documentation’ section</td>
<td></td>
<td>AH</td>
</tr>
<tr>
<td>1.1.2</td>
<td>5 January 2023</td>
<td>Removed references to the colour of certain UI elements</td>
<td></td>
<td>AH</td>
</tr>
<tr>
<td>1.1.3</td>
<td>2 February 2023</td>
<td>Updated screenshots</td>
<td>Branding update</td>
<td>AH</td>
</tr>
<tr>
<td>1.1.4</td>
<td>7 March 2023</td>
<td>Removed conclusion section</td>
<td>Updates across all documentation</td>
<td>AH</td>
</tr>
<tr>
<td>1.2.0</td>
<td>24 March 2023</td>
<td>New document theme</td>
<td>Branding update</td>
<td>AH</td>
</tr>
<tr>
<td>1.2.0</td>
<td>24 March 2023</td>
<td>Modified diagram colours</td>
<td></td>
<td>AH</td>
</tr>
</tbody>
</table>
About Loadbalancer.org

Loadbalancer.org's mission is to ensure that its clients' businesses are never interrupted. The load balancer experts ask the right questions to get to the heart of what matters, bringing a depth of understanding to each deployment. Experience enables Loadbalancer.org engineers to design less complex, unbreakable solutions - and to provide exceptional personalized support.