Load Balancing Pharos Blueprint®
Version 1.2.0
Table of Contents

1. About this Guide .. 4
2. Loadbalancer.org Appliances Supported 4
3. Software Versions Supported 4
 3.1. Loadbalancer.org Appliance 4
 3.2. Pharos Blueprint .. 4
4. Pharos Blueprint .. 4
5. Load Balancing Pharos Blueprint 4
 5.1. Load Balancing & HA Requirements 5
 5.2. Port Requirements ... 5
 5.3. Pharos Blueprint Deployment Concept 5
 5.4. Virtual Service (VIP) Requirements 6
 5.5. Supported Load Balancer Deployment Methods 6
 Layer 4 DR Mode ... 6
 Layer 7 SNAT Mode ... 7
6. Loadbalancer.org Appliance – the Basics 8
 6.1. Virtual Appliance ... 8
 6.2. Initial Network Configuration 9
 6.3. Accessing the Appliance WebUI 9
 Main Menu Options 10
 6.4. Appliance Software Update 11
 Determining the Current Software Version 11
 Checking for Updates using Online Update 11
 Using Offline Update 11
 6.5. Ports Used by the Appliance 12
 6.6. HA Clustered Pair Configuration 13
7. Load Balancing Pharos Blueprint – Using Layer 4 DR Mode 13
 7.1. STEP 1 – Prepare the Pharos Blueprint Servers for Load Balancing 13
 A) Prerequisites ... 13
 B) Solve the ARP Problem on Each server 13
 C) Enable Print Server Load Balancing 13
 D) Configure Name Resolution 14
 E) Reboot Each Server 15
 7.2. STEP 2 – Configure the VIPs & RIPs 15
 VIP1 – Port 808 ... 15
 VIP2 – Port 8080 .. 16
 VIP3 – Port 9001 .. 16
 VIP4 – Port 445 ... 17
8. Load Balancing Pharos Blueprint – Using Layer 7 SNAT Mode 17
 8.1. STEP 1 – Prepare the Pharos Blueprint Servers for Load Balancing 17
 A) Prerequisites ... 17
 B) Enable Print Server Load Balancing 17
 C) Configure Name Resolution 18
 D) Reboot Each Server 19
 8.2. STEP 2 – Configure the VIPs & RIPs 19
 VIP1 – Port 808 ... 19
 VIP2 – Port 8080 .. 20
 VIP3 – Port 9001 .. 21
 VIP4 – Port 445 ... 21
1. About this Guide

This guide details the steps required to configure a load balanced Pharos Blueprint environment utilizing Loadbalancer.org appliances. It covers the configuration of the load balancers and also any Pharos Blueprint configuration changes that are required to enable load balancing.

For more information about initial appliance deployment, network configuration and using the Web User Interface (WebUI), please also refer to the Administration Manual.

2. Loadbalancer.org Appliances Supported

All our products can be used with Pharos Blueprint. For full specifications of available models please refer to: https://www.loadbalancer.org/products.

Some features may not be available or fully supported in all cloud platforms due to platform specific limitations. For more details, please refer to the "Main Differences to our Standard (Non-Cloud) Product" section in the appropriate cloud platform Quick Start Guide or check with Loadbalancer.org support.

3. Software Versions Supported

3.1. Loadbalancer.org Appliance

- V8.9.1 and later

| Note | The screenshots used throughout this document aim to track the latest Loadbalancer.org software version. If you’re using an older version, or the very latest, the screenshots presented here may not match your WebUI exactly. |

3.2. Pharos Blueprint

- Pharos Blueprint Enterprise v5.3 and later

4. Pharos Blueprint

Pharos Blueprint gives you critical insights into your print environment and workflows, empowering you to successfully manage print and its related costs. Blueprint is a single system with the flexibility to work with a mix and match of equipment manufacturers and device models. Blueprint makes it easy to manage your entire print environment. Blueprint delivers secure printing and significant cost savings and waste reduction. It provides the information you need to optimize your equipment fleet, improve employee printing habits, and take meaningful action today and throughout the future.

5. Load Balancing Pharos Blueprint

| Note | It’s highly recommended that you have a working Pharos Blueprint environment first before implementing the load balancer. |
5.1. Load Balancing & HA Requirements

2 or more Collector servers are configured to create a load balanced pool. Clients then connect to this pool via Virtual Services (VIPs).

5.2. Port Requirements

The following tables show the ports that are load balanced:

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocols</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>808</td>
<td>TCP</td>
<td>Server to Server Communications (Analyst to Collector, Collector to Collector)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Administrator to Server Communications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>808 is used by the Administrator to the TaskMaster. It is encrypted. Anything the Administrator tool wants is pulled by TaskMaster service and given to Administrator over 808</td>
</tr>
<tr>
<td>8080</td>
<td>TCP</td>
<td>Server to Server Communications (Analyst to Collector, Collector to Collector)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Administrator to Server Communications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8080 is how Collectors upload their transaction info and provide status update/health check info to the Analyst, and how the Analyst updates its own health check</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Client to Server Communication (View waiting print jobs)</td>
</tr>
<tr>
<td>9001</td>
<td>TCP</td>
<td>Used for inter-server communications between the Pharos Systems Secure Release Service and the MobilePrint Worker service</td>
</tr>
<tr>
<td>445</td>
<td>TCP</td>
<td>Microsoft Print/SMB Services</td>
</tr>
</tbody>
</table>

5.3. Pharos Blueprint Deployment Concept
VIP = Virtual IP Addresses

5.4. Virtual Service (VIP) Requirements

To provide load balancing and HA for Pharos Blueprint, 4 VIPs are used. Three VIPs for the Pharos Blueprint services, and a fourth for the underlying Microsoft print services.

5.5. Supported Load Balancer Deployment Methods

For Pharos Blueprint, both layer 4 DR mode and layer 7 SNAT mode can be used, although for maximum throughput the preferred method is Layer 4 DR Mode (Direct Routing, aka DSR / Direct Server Return). This is a very high performance solution that requires little change to your existing infrastructure. It is necessary to solve “the ARP problem” on the Collector Servers. This is a straightforward process, and is detailed in Solving the ARP Problem.

Where it’s not feasible to use layer 4 DR mode, layer 7 SNAT mode should be used. Whilst this mode does not have the raw throughput of layer 4 methods, it still enables high performance load balancing and requires no changes to the Collector Servers.

Each Mode is described below.

Layer 4 DR Mode

Layer 4 DR (Direct Routing) mode is a very high performance solution that requires little change to your existing infrastructure.

Note: Kemp, Brocade, Barracuda & A10 Networks call this Direct Server Return and F5 call it nPath.
DR mode works by changing the destination MAC address of the incoming packet to match the selected Real Server on the fly which is very fast.

When the packet reaches the Real Server it expects the Real Server to own the Virtual Services IP address (VIP). This means that each Real Server (and the load balanced application) must respond to both the Real Server’s own IP address and the VIP.

The Real Server should not respond to ARP requests for the VIP. Only the load balancer should do this. Configuring the Real Server in this way is referred to as "Solving the ARP Problem". For more information please refer to DR Mode Considerations.

On average, DR mode is 8 times quicker than NAT mode for HTTP and much faster for other applications such as Remote Desktop Services, streaming media and FTP.

The load balancer must have an interface in the same subnet as the Real Servers to ensure layer 2 connectivity which is required for DR mode to operate.

The VIP can be brought up on the same subnet as the Real Servers or on a different subnet provided that the load balancer has an interface in that subnet.

Port translation is not possible with DR mode, e.g. VIP:80 → RIP:8080 is not supported.

DR mode is transparent, i.e. the Real Server will see the source IP address of the client.

Layer 7 SNAT Mode
Layer 7 SNAT mode uses a proxy (HAProxy) at the application layer. Inbound requests are terminated on the load balancer and HAProxy generates a new corresponding request to the chosen Real Server. As a result, Layer 7 is typically not as fast as the Layer 4 methods. Layer 7 is typically chosen when either enhanced options such as SSL termination, cookie based persistence, URL rewriting, header insertion/deletion etc. are required, or when the network topology prohibits the use of the layer 4 methods.
Because layer 7 SNAT mode is a full proxy, any server in the cluster can be on any accessible subnet including across the Internet or WAN.

Layer 7 SNAT mode is not transparent by default, i.e. the Real Servers will not see the source IP address of the client, they will see the load balancer’s own IP address by default, or any other local appliance IP address if preferred (e.g. the VIP address). This can be configured per layer 7 VIP. If required, the load balancer can be configured to provide the actual client IP address to the Real Servers in 2 ways. Either by inserting a header that contains the client’s source IP address, or by modifying the Source Address field of the IP packets and replacing the IP address of the load balancer with the IP address of the client. For more information on these methods please refer to Transparency at Layer 7.

Layer 7 SNAT mode can be deployed using either a one-arm or two-arm configuration. For two-arm deployments, eth0 is normally used for the internal network and eth1 is used for the external network although this is not mandatory.

Requires no mode-specific configuration changes to the load balanced Real Servers.

Port translation is possible with Layer 7 SNAT mode, e.g. VIP:80 → RIP:8080 is supported.

You should not use the same RIP:PORT combination for layer 7 SNAT mode VIPs and layer 4 SNAT mode VIPs because the required firewall rules conflict.

6. Loadbalancer.org Appliance – the Basics

6.1. Virtual Appliance

A fully featured, fully supported 30 day trial is available if you are conducting a PoC (Proof of Concept) deployment. The VA is currently available for VMware, Virtual Box, Hyper-V, KVM, XEN and Nutanix AHV and has been optimized for each Hypervisor. By default, the VA is allocated 2 vCPUs, 4GB of RAM and has a 20GB virtual disk. The Virtual Appliance can be downloaded here.
6.2. Initial Network Configuration

After boot up, follow the instructions on the appliance console to configure the management IP address, subnet mask, default gateway, DNS servers and other network and administrative settings.

Important

Be sure to set a secure password for the load balancer, when prompted during the setup routine.

6.3. Accessing the Appliance WebUI

The WebUI is accessed using a web browser. By default, users are authenticated using Apache authentication. Users can also be authenticated against LDAP, LDAPS, Active Directory or Radius - for more information, please refer to External Authentication.

Note

There are certain differences when accessing the WebUI for the cloud appliances. For details, please refer to the relevant Quick Start / Configuration Guide.

1. Using a browser, navigate to the following URL:

Note

You’ll receive a warning about the WebUI’s SSL certificate. This is due to the default self signed certificate that is used. If preferred, you can upload your own certificate - for more information, please refer to Appliance Security Features.

Note

If you need to change the port, IP address or protocol that the WebUI listens on, please refer to Service Socket Addresses.

2. Log in to the WebUI using the following credentials:

Username: loadbalancer
Password: <configured-during-network-setup-wizard>

Note

To change the password, use the WebUI menu option: Maintenance > Passwords.
Once logged in, the WebUI will be displayed as shown below:

3. You’ll be asked if you want to run the Setup Wizard which can be used to configure layer 7 services. Click **Dismiss** if you’re following a guide or want to configure the appliance manually or click **Accept** to start the wizard.

Main Menu Options

- **System Overview** - Displays a graphical summary of all VIPs, RIPS and key appliance statistics
- **Local Configuration** - Configure local host settings such as IP address, DNS, system time etc.
- **Cluster Configuration** - Configure load balanced services such as VIPs & RIPS
- **Maintenance** - Perform maintenance tasks such as service restarts and taking backups
- **View Configuration** - Display the saved appliance configuration settings
- **Reports** - View various appliance reports & graphs
- **Logs** - View various appliance logs
- **Support** - Create a support download, contact the support team & access useful links
6.4. Appliance Software Update

To ensure that the appliance(s) are running the latest software version, we recommend a software update check is performed.

Determining the Current Software Version

The software version is displayed at the bottom of the WebUI as shown in the example below:

Checking for Updates using Online Update

1. Using the WebUI, navigate to: **Maintenance > Software Update**.
2. Select **Online Update**.
3. If the latest version is already installed, a message similar to the following will be displayed:

 ![Information: Version v8.11.1 is the current release. No updates are available](image)

4. If an update is available, you'll be presented with a list of new features, improvements, bug fixes and security related updates.
5. Click **Online Update** to start the update process.

 ![Note: Do not navigate away whilst the update is ongoing, this may cause the update to fail.](image)

6. Once complete (the update can take several minutes depending on download speed and upgrade version) the following message will be displayed:

 ![Information: Update completed successfully.](image)

7. If services need to be reloaded/restarted or the appliance needs a full restart, you'll be prompted accordingly.

Using Offline Update

If the load balancer does not have access to the Internet, offline update can be used.
To perform an offline update:

1. Using the WebUI, navigate to: Maintenance > Software Update.
2. Select Offline Update.
3. The following screen will be displayed:

 Software Update

 Offline Update

 The following steps will lead you through offline update:

 1. Contact support@loadbalancer.org to obtain the offline update archive and checksum.
 2. Save the archive and checksum to your local machine.
 3. Select the archive and checksum files in the upload form below.
 4. Click Upload and Install to begin the update process.

 Where:

 Archive: [Choose File] No file chosen
 Checksum: [Choose File] No file chosen

 ![Upload and Install Button]

 4. Select the Archive and Checksum files.
5. Click Upload and Install.
6. If services need to be reloaded/restarted or the appliance needs a full restart, you'll be prompted accordingly.

6.5. Ports Used by the Appliance

By default, the appliance uses the following TCP & UDP ports:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Port</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>22 *</td>
<td>SSH</td>
</tr>
<tr>
<td>TCP & UDP</td>
<td>53 *</td>
<td>DNS / GSLB</td>
</tr>
<tr>
<td>TCP & UDP</td>
<td>123</td>
<td>NTP</td>
</tr>
<tr>
<td>TCP & UDP</td>
<td>161 *</td>
<td>SNMP</td>
</tr>
<tr>
<td>UDP</td>
<td>6694</td>
<td>Heartbeat between Primary & Secondary appliances in HA mode</td>
</tr>
<tr>
<td>TCP</td>
<td>7778</td>
<td>HAPProxy persistence table replication</td>
</tr>
<tr>
<td>TCP</td>
<td>9000 *</td>
<td>Gateway service (Centralized/Portal Management)</td>
</tr>
<tr>
<td>TCP</td>
<td>9080 *</td>
<td>WebUI - HTTP (disabled by default)</td>
</tr>
<tr>
<td>TCP</td>
<td>9081 *</td>
<td>Nginx fallback page</td>
</tr>
</tbody>
</table>
Protocol, Port, Purpose

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Port</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>9443</td>
<td>WebUI - HTTPS</td>
</tr>
<tr>
<td>TCP</td>
<td>25565</td>
<td>Shuttle service (Centralized/Portal Management)</td>
</tr>
</tbody>
</table>

Note
The ports used for SSH, GSLB, SNMP, the WebUI, the fallback page, the gateway service and the shuttle service can be changed if required. For more information, please refer to [Service Socket Addresses].

6.6. HA Clustered Pair Configuration

Loadbalancer.org recommend that load balancer appliances are deployed in pairs for high availability. In this guide a single unit is deployed first, and adding a secondary unit is covered in [Configuring HA - Adding a Secondary Appliance].

7. Load Balancing Pharos Blueprint – Using Layer 4 DR Mode

7.1. STEP 1 – Prepare the Pharos Blueprint Servers for Load Balancing

A) Prerequisites
For a load balanced Pharos Blueprint environment, each Collector Server must comply with the following requirements:

- Be a member of a Microsoft Windows Domain
- Have the Print and Document Service role / Print Server service installed
- Have all required printers installed and shared – the share names and permissions must be the same across all servers
- Have Pharos Blueprint installed

B) Solve the ARP Problem on Each server
When using layer 4 DR mode, the "ARP problem" must be solved on each Collector server for DR mode to work. For detailed steps on solving the ARP problem for Windows, please refer to [Solving the ARP Problem] for more information.

For a detailed explanation of DR mode and the nature of the ARP problem, please refer to [Layer 4 DR Mode].

C) Enable Print Server Load Balancing
To enable the load balanced Collector Servers to be accessed via a shared name (blueprintservice is the example used in this guide), the following steps must be completed:

Windows 2019

Host entries must be added to the local hosts file on each Collector Server. For example, if you have 2 Collector
Servers: 192.168.81.11 and 192.168.81.12, add the following entries to the hosts files:

On the 192.168.81.11 server:

192.168.81.11 blueprintservice
192.168.81.11 blueprintservice.yourdomain.com

On the 192.168.81.12 server:

192.168.81.12 blueprintservice
192.168.81.12 blueprintservice.yourdomain.com

where **blueprintservice** is the DNS name clients use to access the load balanced Collector Servers.

Windows 2012 & 2016

Configure the following Registry entries:

- **Key:** HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa
 - **Value:** DisableLoopbackCheck
 - **Type:** REG_DWORD
 - **Data:** 1

- **Key:** HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters
 - **Value:** DisableStrictNameChecking
 - **Type:** REG_DWORD
 - **Data:** 1

- **Key:** HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters
 - **Value:** OptionalNames
 - **Type:** REG_MULTI_SZ
 - **Data:** blueprintservice

In the example presented here, **blueprintservice** is the name that will be used to access the load balanced Collector Servers via the VIPs created on the load balancer. This can be set to any appropriate name. Whatever name is used, it must resolve to the IP address used for the VIPs.

Note

D) Configure Name Resolution

To enable clients to connect via the load balancer, DNS name resolution must be configured. Create a DNS Host (A) record for the printer share name (**blueprintservice** in this example) that points at the IP address used for the VIPs (**192.168.81.10** in this example).

In addition, NetBIOS over TCP/IP should be disabled on **all** interfaces on each Collector Server as shown below:
E) Reboot Each Server
To apply all settings, reboot each Collector Server.

7.2. STEP 2 – Configure the VIPs & RIPS

VIP1 – Port 808
Define the VIP

1. Using the WebUI, navigate to Cluster Configuration > Layer 4 – Virtual Services and click Add a new Virtual Service.
2. Define the **Label** (i.e. the name) for the virtual service as required, e.g. **PharosBP-808**.

3. Set the **Virtual Service IP Address** field to the required IP address, e.g. **192.168.81.10**.

4. Set **Ports** to **808**.

5. Leave **Protocol** set to **TCP**.

6. Leave **Forwarding Method** set to **Direct Routing**.

7. Click **Update**.

8. Now click **Modify** next to the newly created VIP.

9. Scroll down to the **Persistence** section and uncheck the **Enable** checkbox.

10. Click **Update**.

Define the Real Servers (RIPs)

1. Using the WebUI, navigate to **Cluster Configuration > Layer 4 – Real Servers** and click on **Add a new Real Server** next to the newly created VIP.

 ![Real Server Table](image.png)

2. Define the **Label** (i.e. the name) for the Real Server as required, e.g. **Collector1**.

3. Set the **Real Server IP Address** field to the required IP address, e.g. **192.168.81.11**.

4. Click **Update**.

5. Repeat these steps to add additional Collector Servers as required.

VIP2 – Port 8080

- Click **Modify** next to the **PharosBP-808** VIP just created, then click **Duplicate Service**.
- Change the VIP **label** to an appropriate name, e.g. **PharosBP-8080**.
- Change the VIP **Ports** to 8080.
- Leave all other settings the same.
- Click **Update** to save the new VIP.

VIP3 – Port 9001
• Again, duplicate the \textit{PharosBP-808} VIP.
• Change the VIP \textit{label} to an appropriate name, e.g. \textit{PharosBP-9001}.
• Change the VIP \textit{Ports} to 9001.
• Leave all other settings the same.
• Click \texttt{Update} to save the new VIP.

VIP4 – Port 445
• Again, duplicate the \textit{PharosBP-808} VIP.
• Change the VIP \textit{label} to an appropriate name, e.g. \textit{PharosBP-445}.
• Change the VIP \textit{Ports} to 445.
• Leave all other settings the same.
• Click \texttt{Update} to save the new VIP.

8. Load Balancing Pharos Blueprint – Using Layer 7 SNAT Mode

8.1. STEP 1 – Prepare the Pharos Blueprint Servers for Load Balancing

A) Prerequisites

For a load balanced Pharos Blueprint environment, each Collector Server must comply with the following requirements:

• Be a member of a Microsoft Windows Domain
• Have the \textit{Print and Document Service} role / \textit{Print Server} service installed
• Have all required printers installed and shared – the share names and permissions must be the same across all servers
• Have Pharos Blueprint installed

B) Enable Print Server Load Balancing

To enable the load balanced Collector Servers to be accessed via a shared name (\texttt{blueprintservice} is the example used in this guide), the following steps must be completed:

\textit{Windows 2019}

Host entries must be added to the local hosts file on each Collector Server. For example, if you have 2 Collector Servers: 192.168.81.11 and 192.168.81.12, add the following entries to the hosts files:

On the 192.168.81.11 server:

\begin{verbatim}
192.168.81.11 blueprintservice
\end{verbatim}
192.168.81.11 blueprintservice.yourdomain.com

On the 192.168.81.12 server:

192.168.81.12 blueprintservice
192.168.81.12 blueprintservice.yourdomain.com

where **blueprintservice** is the DNS name clients use to access the load balanced Collector Servers.

Windows 2012 & 2016

Configure the following Registry entries:

- **Key:** HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa
 Value: DisableLoopbackCheck
 Type: REG_DWORD
 Data: 1

- **Key:** HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters
 Value: DisableStrictNameChecking
 Type: REG_DWORD
 Data: 1

- **Key:** HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters
 Value: OptionalNames
 Type: REG_MULTI_SZ
 Data: blueprintservice

Note

In the example presented here, **blueprintservice** is the name that will be used to access the load balanced Collector Servers via the VIPs created on the load balancer. This can be set to any appropriate name. Whatever name is used, it must resolve to the IP address used for the VIPs.

C) Configure Name Resolution

To enable clients to connect via the load balancer, DNS name resolution must be configured. Create a DNS Host (A) record for the printer share name (**blueprintservice** in this example) that points at the IP address used for the VIPs (**192.168.81.10** in this example).

In addition, NetBIOS over TCP/IP should be disabled on all interfaces on each Collector Server as shown below:
D) Reboot Each Server
To apply all settings, reboot each Collector Server.

8.2. STEP 2 – Configure the VIPs & RIPv

VIP1 – Port 808
Define the VIP

1. Using the WebUI, navigate to Cluster Configuration > Layer 7 – Virtual Services and click Add a new Virtual Service.
2. Define the **Label** (i.e. the name) for the virtual service as required, e.g. PharosBP-808.

3. Set the **Virtual Service IP Address** field to the required IP address, e.g. 192.168.81.10.

4. Set **Ports** to 808.

5. Change **Layer 7 Protocol** to TCP Mode.

6. Click **Update**.

7. Now click **Modify** next to the newly created VIP.

8. Scroll down to the **Persistence** section and change **Persistence Mode** to None.

9. Click **Update**.

Define the Real Servers (RIPs)

1. Using the WebUI, navigate to **Cluster Configuration > Layer 7 – Real Servers** and click on **Add a new Real Server** next to the newly created VIP.

 ![Layer 7 Add a new Real Server]

 2. Define the **Label** (i.e. the name) for the Real Server as required, e.g. Collector1.

 3. Set the **Real Server IP Address** field to the required IP address, e.g. 192.168.81.11.

 4. Leave **Real Server Port** blank.

 5. Click **Update**.

 6. Repeat these steps to add additional Collector Servers as required.

VIP2 – Port 8080

- Click **Modify** next to the PharosBP-808 VIP just created, then click **Duplicate Service**.
- Change the VIP **label** to an appropriate name, e.g. PharosBP-8080.
- Change the VIP **Ports** to 8080.
- Leave all other settings the same.
- Click **Update** to save the new VIP.
VIP3 – Port 9001
- Again, duplicate the PharosBP-808 VIP.
- Change the VIP label to an appropriate name, e.g. PharosBP-9001.
- Change the VIP Ports to 9001.
- Leave all other settings the same.
- Click Update to save the new VIP.

VIP4 – Port 445
- Again, duplicate the PharosBP-808 VIP.
- Change the VIP label to an appropriate name, e.g. PharosBP-445.
- Change the VIP Ports to 445.
- Leave all other settings the same.
- Click Update to save the new VIP.

Finalize Settings – Reload HAProxy
To apply settings and activate the new VIPs, click the Reload button in the "Commit changes" box at the top of the screen.

9. Testing & Verification

9.1. Testing the Load Balanced Servers
The load balanced servers can be tested either by browsing to the chosen DNS name, in this guide blueprintservice.

 e.g.

 \\blueprintservice
 \\blueprintservice.yourdomain.com

 The shared printers that have been configured on the Collector Servers should be visible. Open/connect to the shared printers.

9.2. Using System Overview
The System Overview can be viewed in the WebUI. It shows a graphical view of all VIPs & RIPs (i.e. the Pharos Blueprint servers) and shows the state/health of each server as well as the state of the each cluster as a whole.
The example below shows that all Real Servers are healthy and available to accept connections.

<table>
<thead>
<tr>
<th>Virtual Service</th>
<th>IP</th>
<th>Ports</th>
<th>Conns</th>
<th>Protocol</th>
<th>Method</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>PharosBP-808</td>
<td>192.168.81.10</td>
<td>808</td>
<td>0</td>
<td>TCP</td>
<td>Layer 7</td>
<td>Proxy</td>
</tr>
<tr>
<td>Collector1</td>
<td>192.168.81.11</td>
<td>808</td>
<td>100</td>
<td>0</td>
<td>Drain</td>
<td>Halt</td>
</tr>
<tr>
<td>Collector2</td>
<td>192.168.81.12</td>
<td>808</td>
<td>100</td>
<td>0</td>
<td>Drain</td>
<td>Halt</td>
</tr>
<tr>
<td>PharosBP-8080</td>
<td>192.168.81.10</td>
<td>8080</td>
<td>0</td>
<td>TCP</td>
<td>Layer 7</td>
<td>Proxy</td>
</tr>
<tr>
<td>Collector1</td>
<td>192.168.81.11</td>
<td>8080</td>
<td>100</td>
<td>0</td>
<td>Drain</td>
<td>Halt</td>
</tr>
<tr>
<td>Collector2</td>
<td>192.168.81.12</td>
<td>8080</td>
<td>100</td>
<td>0</td>
<td>Drain</td>
<td>Halt</td>
</tr>
<tr>
<td>PharosBP-9001</td>
<td>192.168.81.10</td>
<td>9001</td>
<td>0</td>
<td>TCP</td>
<td>Layer 7</td>
<td>Proxy</td>
</tr>
<tr>
<td>Collector1</td>
<td>192.168.81.11</td>
<td>9001</td>
<td>100</td>
<td>0</td>
<td>Drain</td>
<td>Halt</td>
</tr>
<tr>
<td>Collector2</td>
<td>192.168.81.12</td>
<td>9001</td>
<td>100</td>
<td>0</td>
<td>Drain</td>
<td>Halt</td>
</tr>
<tr>
<td>PharosBP-445</td>
<td>192.168.81.10</td>
<td>445</td>
<td>0</td>
<td>TCP</td>
<td>Layer 7</td>
<td>Proxy</td>
</tr>
<tr>
<td>Collector1</td>
<td>192.168.81.11</td>
<td>445</td>
<td>100</td>
<td>0</td>
<td>Drain</td>
<td>Halt</td>
</tr>
<tr>
<td>Collector2</td>
<td>192.168.81.12</td>
<td>445</td>
<td>100</td>
<td>0</td>
<td>Drain</td>
<td>Halt</td>
</tr>
</tbody>
</table>

Note: This example shows layer 7 VIPs. A layer 4 configuration will look very similar.

If a particular server fails its health check, that server will be displayed red rather than green.

10. Technical Support

For more details about configuring the appliance and assistance with designing your deployment please don’t hesitate to contact the support team using the following email address: support@loadbalancer.org.

11. Further Documentation

For additional information, please refer to the Administration Manual.
12. Appendix

12.1. Solving the ARP Problem

When using Layer 4 DR mode, the ARP problem must be solved. This involves configuring each Real Server to be able to receive traffic destined for the VIP, and ensuring that each Real Server does not respond to ARP requests for the VIP address – only the load balancer should do this.

Windows Server 2012 & Later

Windows Server 2012 and later support Direct Routing (DR) mode through the use of the Microsoft Loopback Adapter that must be installed and configured on each load balanced (Real) Server. The IP address configured on the Loopback Adapter must be the same as the Virtual Service (VIP) address. This enables the server to receive packets that have their destination set as the VIP address. If a Real Server is included in multiple DR mode VIPs, an IP address for each VIP must be added to the Loopback Adapter.

In addition, the strong/weak host behavior must be configured on each Real Server. The weak host model allows packets with any IP to be sent or received via an interface. The strong host model only allows packets with an IP belonging to the interface to be sent or received.

Important: The following 3 steps must be completed on all Real Servers associated with the VIP.

Step 1 of 3: Install the Microsoft Loopback Adapter

1. Click Start, then run hdwwiz to start the Hardware Installation Wizard.
2. Once the Wizard has started, click Next.
3. Select Install the hardware that I manually select from a list (Advanced), click Next.
4. Select Network adapters, click Next.

![Add Hardware](image-url)
5. Select **Microsoft & Microsoft KM-Test Loopback Adapter**, click **Next**.

6. Click **Next** to start the installation, when complete click **Finish**.

Step 2 of 3: Configure the Loopback Adapter

1. Open Control Panel and click **Network and Sharing Center**.

2. Click **Change adapter settings**.

3. Right-click the new Loopback Adapter and select **Properties**.

Important

You can configure IPv4 or IPv6 addresses or both depending on your requirements.

When configuring the loopback adapter properties, make sure that **Client for Microsoft Networks** and **File & Printer Sharing for Microsoft Networks** is also checked as shown below.

IPv4 Addresses

1. Uncheck all items except **Client for Microsoft Networks**, **File & Printer Sharing for Microsoft Networks** and **Internet Protocol Version 4 (TCP/IPv4)** as shown below:

2. Ensure that **Internet Protocol Version (TCP/IPv4)** is selected, click **Properties** and configure the IP address to be the same as the Virtual Service address (VIP) with a subnet mask of **255.255.255.255**, e.g. **192.168.2.20/255.255.255.255** as shown below:
192.168.2.20 is an example, make sure you specify the correct VIP address.

If a Real Server is included in multiple DR mode VIPs, an IP address for each VIP must be added to the Loopback Adapter.

3. Click OK then click Close to save and apply the new settings.

IPv6 Addresses

1. Uncheck all items except Client for Microsoft Networks, File & Printer Sharing for Microsoft Networks and Internet Protocol Version 6 (TCP/IPv6) as shown below:
2. Ensure that Internet Protocol Version (TCP/IPv6) is selected, click Properties and configure the IP address to be the same as the Virtual Service (VIP) and set the Subnet Prefix Length to be the same as your network setting, e.g. `2001:470:1f09:e72::15/64` as shown below:

![Internet Protocol Version 6 (TCP/IPv6) Properties](image)

- **Note**: `2001:470:1f09:e72::15/64` is an example, make sure you specify the correct VIP address.

- **Note**: If a Real Server is included in multiple DR mode VIPs, an IP address for each VIP must be
3. Click **OK** then click **Close** to save and apply the new settings.

Step 3 of 3: Configure the strong/weak host behavior

The strong/weak host behavior can be configured using either of the following 2 methods:

- Option 1 - Using Network Shell (netsh) commands
- Option 2 - Using PowerShell cmdlets

The commands in this section assume that the LAN Adapter is named "net" and the Loopback Adapter is named 'loopback' as shown in the example below:

![Network Connections](image)

Either adjust the commands to use the names allocated to your LAN and loopback adapters, or rename the adapters before running the commands. Names are case sensitive so make sure that the interface names used in the commands match the adapter names exactly.

Option 1 - Using Network Shell (netsh) Commands

To configure the correct strong/weak host behavior run the following commands:

For IPv4 addresses:

```
netsh interface ipv4 set interface "net" weakhostreceive=enabled
netsh interface ipv4 set interface "loopback" weakhostreceive=enabled
netsh interface ipv4 set interface "loopback" weakhostsend=enabled
```

For IPv6 addresses:

```
netsh interface ipv6 set interface "net" weakhostreceive=enabled
netsh interface ipv6 set interface "loopback" weakhostreceive=enabled
netsh interface ipv6 set interface "loopback" weakhostsend=enabled
netsh interface ipv6 set interface "loopback" dadtransmits=0
```

Option 2 - Using PowerShell Cmdlets

For IPv4 addresses:

```bash
```

For IPv6 addresses:
12.2. Configuring HA - Adding a Secondary Appliance

Our recommended configuration is to use a clustered HA pair of load balancers to provide a highly available and resilient load balancing solution. We recommend that the Primary appliance is fully configured first, then the Secondary appliance can be added to create an HA pair. Once the HA pair is configured, load balanced services must be configured and modified on the Primary appliance. The Secondary appliance will be automatically kept in sync.

For Enterprise Azure, the HA pair should be configured first. For more information, please refer to the Azure Quick Start/Configuration Guide available in the documentation library.

The clustered HA pair uses Heartbeat to determine the state of the other appliance. Should the active device (normally the Primary) suffer a failure, the passive device (normally the Secondary) will take over.

Non-Replicated Settings

A number of settings are not replicated as part of the Primary/Secondary pairing process and therefore must be manually configured on the Secondary appliance. These are listed by WebUI menu option in the table below:

<table>
<thead>
<tr>
<th>WebUI Main Menu Option</th>
<th>Sub Menu Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Configuration</td>
<td>Hostname & DNS</td>
<td>Hostname and DNS settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Network Interface Configuration</td>
<td>Interface IP addresses, bonding configuration and VLANs</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Routing</td>
<td>Default gateways and static routes</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>System Date & time</td>
<td>Time and date related settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Physical – Advanced Configuration</td>
<td>Various appliance settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Portal Management</td>
<td>Portal management settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Security</td>
<td>Security settings</td>
</tr>
</tbody>
</table>

© Copyright Loadbalancer.org • Documentation • Load Balancing Pharos Blueprint®
<table>
<thead>
<tr>
<th>WebUI Main Menu Option</th>
<th>Sub Menu Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Configuration</td>
<td>SNMP Configuration</td>
<td>SNMP settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Graphing</td>
<td>Graphing settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>License Key</td>
<td>Appliance licensing</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Backup & Restore</td>
<td>Local XML backups</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Software Updates</td>
<td>Appliance software updates</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Fallback Page</td>
<td>Fallback page configuration</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Script</td>
<td>Firewall (iptables) configuration</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Lockdown</td>
<td>Appliance management lockdown settings</td>
</tr>
<tr>
<td></td>
<td>Wizard</td>
<td></td>
</tr>
</tbody>
</table>

Important Make sure that where any of the above have been configured on the Primary appliance, they’re also configured on the Secondary.

Configuring the HA Clustered Pair

Note If you have already run the firewall lockdown wizard on either appliance, you’ll need to ensure that it is temporarily disabled on both appliances whilst performing the pairing process.

1. Deploy a second appliance that will be the Secondary and configure initial network settings.

2. Using the WebUI on the Primary appliance, navigate to: Cluster Configuration > High-Availability Configuration.

Create a Clustered Pair

3. Specify the IP address and the loadbalancer user’s password for the Secondary (peer) appliance as shown in the example above.

4. Click Add new node.

5. The pairing process now commences as shown below:
6. Once complete, the following will be displayed on the Primary appliance:

High Availability Configuration - primary

![Diagram showing HA configuration between Primary and Secondary appliances](image)

7. To finalize the configuration, restart heartbeat and any other services as prompted in the "Commit changes" message box at the top of the screen.

- **Note**: Clicking the **Restart Heartbeat** button on the Primary appliance will also automatically restart heartbeat on the Secondary appliance.

- **Note**: For more details on configuring HA with 2 appliances, please refer to [Appliance Clustering for HA](#).

- **Note**: For details on testing and verifying HA, please refer to [Clustered Pair Diagnostics](#).
13. Document Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Change</th>
<th>Reason for Change</th>
<th>Changed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0</td>
<td>3 March 2021</td>
<td>Initial version</td>
<td></td>
<td>RJC</td>
</tr>
<tr>
<td>1.0.1</td>
<td>25 March 2021</td>
<td>Added section “Loadbalancer.org Appliance – the Basics”</td>
<td>Not included in the initial version</td>
<td>RJC</td>
</tr>
<tr>
<td>1.1.0</td>
<td>1 October 2021</td>
<td>Converted the document to AsciiDoc</td>
<td>Move to new documentation system</td>
<td>AH,RJC,ZAC</td>
</tr>
<tr>
<td>1.1.1</td>
<td>28 September 2022</td>
<td>Updated layer 7 VIP and RIP creation screenshots</td>
<td>Reflect changes in the web user interface</td>
<td>AH</td>
</tr>
<tr>
<td>1.1.2</td>
<td>5 January 2023</td>
<td>Combined software version information into one section</td>
<td>Housekeeping across all documentation</td>
<td>AH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added one level of section numbering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added software update instructions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added table of ports used by the appliance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reworded 'Further Documentation' section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removed references to the colour of certain UI elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.3</td>
<td>2 February 2023</td>
<td>Updated screenshots</td>
<td>Branding update</td>
<td>AH</td>
</tr>
<tr>
<td>1.1.4</td>
<td>7 March 2023</td>
<td>Removed conclusion section</td>
<td>Updates across all documentation</td>
<td>AH</td>
</tr>
<tr>
<td>1.2.0</td>
<td>24 March 2023</td>
<td>New document theme</td>
<td>Branding update</td>
<td>AH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified diagram colours</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
About Loadbalancer.org

Loadbalancer.org’s mission is to ensure that its clients’ businesses are never interrupted. The load balancer experts ask the right questions to get to the heart of what matters, bringing a depth of understanding to each deployment. Experience enables Loadbalancer.org engineers to design less complex, unbreakable solutions - and to provide exceptional personalized support.

Visit us: www.loadbalancer.org
Phone us: +44 (0)330 380 1064
Phone us: +1 833 274 2566
Email us: info@loadbalancer.org
Follow us: @loadbalancer.org