Load Balancing Philips Healthcare Vue PACS

Version 1.1
Table of Contents

1. About this Guide .. 4
 1.1. Acronyms & Terminology Used in the Guide 4
2. Prerequisites .. 4
3. Software Versions Supported 4
 3.1. Loadbalancer.org Appliance 4
 3.2. Philips Vue PACS .. 4
4. Load Balancing Philips Vue PACS 5
 4.1. Virtual Services (VIP) Requirements 5
 4.2. SSL Termination ... 5
5. Ports Used by the Appliance 6
6. Deployment Concept .. 6
7. Load Balancer Deployment Methods 7
 7.1. Layer 7 SNAT Mode ... 7
8. Configuring Vue PACS for Load Balancing 8
 8.1. Layer 7 SNAT Mode ... 8
9. Load Balancer Appliance Installation & Configuration for Vue PACS 8
 9.1. Overview ... 8
 9.2. Hardware Appliance Installation 8
 9.3. Configuring Initial Network Settings 9
 9.4. Accessing the Appliance WebUI 14
 9.4.1. Main Menu Options 15
 9.5. Installing the License Key 15
 9.6. Appliance Software Update 16
 9.6.1. Determining the Current Software Version 16
 9.6.2. Checking for Updates using Online Update 16
 9.6.3. Using Offline Update 17
 9.7. Appliance Security Mode Configuration 18
 9.8. Appliance Network Configuration 18
 9.8.1. Verify Network Connections 18
 9.8.2. Configuring a floating IP Address for use as a Default Gateway 19
 9.8.3. Configuring Hostname & DNS 19
 9.8.4. Configuring NTP .. 19
 9.9. Configuring Load Balanced Vue PACS Services 19
 9.9.1. VIP 1 - DICOM_VIP 19
 9.9.1.1. Virtual Service (VIP) Configuration 20
 9.9.1.2. Define the Associated Real Servers (RIPs) 20
 9.9.2. VIP 2 - DMWL_VIP 21
 9.9.2.1. Virtual Service (VIP) Configuration 21
 9.9.2.2. Define the Associated Real Servers (RIPs) 22
 9.9.3. VIP 3 - PORTAL_VIP 22
 9.9.3.1. Configure the Custom Health Check 22
 9.9.3.2. Virtual Service (VIP) Configuration 24
 9.9.3.3. Define the Associated Real Servers (RIPs) 25
 9.9.3.4. Upload the SSL Certificate 26
 9.9.3.5. Configuring SSL Termination 27
 9.9.4. VIP 3-B1 - CHAT .. 27
 9.9.4.1. Virtual Service (VIP) Configuration 27
 9.9.4.2. Define the Associated Real Servers (RIPs) 28
10. Outbound (lxport) configuration .. 44
11. Testing & Verification .. 44
12. Configuring HA - Adding a Secondary Appliance ... 45
 12.1. Non-Replicated Settings 46
 12.2. Configuring the HA Clustered Pair 46
13. Optional Appliance Configuration 48
 13.1. SNMP Configuration ... 48
 13.2. Configuring Email Alerts for Virtual Services 49
 13.2.1. Layer 4 .. 49
 13.2.1.1. Global Layer 4 Email Settings 49
 13.2.1.2. VIP Level Settings 50
 13.2.2. Layer 7 .. 51
 13.3. Configuring Email Alerts for Heartbeat 51
 13.4. Configuring a Smart Host (SMTP relay) 52
14. Technical Support .. 52
15. Further Documentation ... 52
16. Appendix .. 53
 16.1. Configuring VLAN Interfaces 53
 16.2. Configuring the Default Gateway 53
 16.3. Traffic Routing Options 54
 16.3.1. Configuring Static Routes 54
 16.3.2. Configuring PBR (Policy Based Routing) 54
 16.4. Generating a CSR on the Load Balancer 54
17. Document Revision History .. 56
1. About this Guide

This guide details the steps required to configure a load balanced Philips Healthcare Vue PACS environment utilizing Loadbalancer.org appliances. It covers the configuration of the load balancers and also any Vue PACS configuration changes that are required to enable load balancing.

1.1. Acronyms & Terminology Used in the Guide

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFM</td>
<td>Work Flow Manager</td>
</tr>
<tr>
<td>EIS</td>
<td>Extensible Integration Software (Worklist Server)</td>
</tr>
<tr>
<td>VIP</td>
<td>Virtual IP address - the IP address of the load balanced cluster of RIPv1s, the address presented to connecting clients. Also refers to the logical load balancer configuration and is used as an acronym for Virtual Service.</td>
</tr>
<tr>
<td>RIP</td>
<td>The Real IP address - the IP address of a backend server in the cluster. Also refers to the logical load balancer configuration and is used as an acronym for Real Server.</td>
</tr>
<tr>
<td>Virtual Service</td>
<td>The main building block used to define load balanced services. It defines the IP address clients connect to, which Real Servers are load balanced and other settings such as health check options, persistence options and timeout settings.</td>
</tr>
<tr>
<td>Real Server</td>
<td>The actual backend server being load balanced. Multiple Real Servers are associated with a Virtual Service.</td>
</tr>
</tbody>
</table>

2. Prerequisites

1. Ensure that firewalls and other network devices are configured to allow management and other required access to the appliance - for details of all ports used refer to Ports Used by the Appliance.

2. Ensure that firewalls and other network devices are configured to allow client/test access to all Virtual Services (VIPs).

3. Ensure that firewalls and other network devices are configured to allow load balancer access to all Vue PACS servers.

4. Have IP addresses for the appliance and all required Virtual Services.

3. Software Versions Supported

3.1. Loadbalancer.org Appliance

- V8.8.1 & later

3.2. Philips Vue PACS

- V12.2.5 & later
4. Load Balancing Philips Vue PACS

4.1. Virtual Services (VIP) Requirements

To provide load balancing and HA for Vue PACS, the following VIPs are required:

<table>
<thead>
<tr>
<th>Ref.</th>
<th>VIP Name</th>
<th>Mode/Type</th>
<th>Port(s)</th>
<th>Persistence</th>
<th>Health Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIP 1</td>
<td>DICOM_VIP</td>
<td>L7 SNAT</td>
<td>2104</td>
<td>Source IP</td>
<td>Connect to Port</td>
</tr>
<tr>
<td>VIP 2</td>
<td>DMWL_VIP</td>
<td>L7 SNAT</td>
<td>3320</td>
<td>Source IP</td>
<td>Connect to Port</td>
</tr>
<tr>
<td>VIP 3</td>
<td>PORTAL_VIP</td>
<td>L7 SNAT</td>
<td>80</td>
<td>Source IP</td>
<td>External Script</td>
</tr>
<tr>
<td>VIP 3-B1</td>
<td>CHAT</td>
<td>L7 SNAT</td>
<td>-</td>
<td>None</td>
<td>HTTPS (GET)</td>
</tr>
<tr>
<td>VIP 4</td>
<td>PORTAL_VIP_STANDBY</td>
<td>L7 SNAT</td>
<td>80</td>
<td>Source IP</td>
<td>External Script</td>
</tr>
<tr>
<td>VIP 4-B1</td>
<td>CHAT_STANDBY</td>
<td>L7 SNAT</td>
<td>-</td>
<td>None</td>
<td>HTTPS (GET)</td>
</tr>
<tr>
<td>VIP 5</td>
<td>CLIENT_VIP</td>
<td>L7 SNAT</td>
<td>80,443,514,2</td>
<td>Source IP</td>
<td>Connect to Port</td>
</tr>
<tr>
<td>VIP 6</td>
<td>CLIENT_DB_VIP</td>
<td>L7 SNAT</td>
<td>1521</td>
<td>Source IP</td>
<td>Connect to Port</td>
</tr>
<tr>
<td>VIP 7</td>
<td>HL7_VIP</td>
<td>L7 SNAT</td>
<td>10010,4001,4</td>
<td>Source IP</td>
<td>Connect to Port</td>
</tr>
</tbody>
</table>

VIPs with references in the format VIP <number>-B<number> are Backend Only VIPs. These define a pool of Real Servers and are used for chat and syscfg traffic. ACL’s are used by the ‘parent’ VIP to determine when the Backend Only VIPs are used based on the requested URL.

4.2. SSL Termination

SSL Termination is configured on the load balancer for the following VIPs:

- VIP 3 - PORTAL_VIP
- VIP 4 - PORTAL_VIP_STANDBY
This provides a corresponding HTTPS Virtual Service for each VIP. Certificates in PEM or PFX format can be uploaded or if required a CSR can be generated on the load balancer to request a new certificate.

5. Ports Used by the Appliance

By default, the appliance uses the following TCP & UDP ports:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Port</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>22 *</td>
<td>SSH</td>
</tr>
<tr>
<td>TCP & UDP</td>
<td>53 *</td>
<td>DNS / GSLB</td>
</tr>
<tr>
<td>TCP & UDP</td>
<td>123</td>
<td>NTP</td>
</tr>
<tr>
<td>TCP & UDP</td>
<td>161 *</td>
<td>SNMP</td>
</tr>
<tr>
<td>UDP</td>
<td>6694</td>
<td>Heartbeat between Primary & Secondary appliances in HA mode</td>
</tr>
<tr>
<td>TCP</td>
<td>7778</td>
<td>HAPProxy persistence table replication</td>
</tr>
<tr>
<td>TCP</td>
<td>9000 *</td>
<td>Gateway service (Centralized/Portal Management)</td>
</tr>
<tr>
<td>TCP</td>
<td>9080 *</td>
<td>WebUI - HTTP (disabled by default)</td>
</tr>
<tr>
<td>TCP</td>
<td>9081 *</td>
<td>Nginx fallback page</td>
</tr>
<tr>
<td>TCP</td>
<td>9443 *</td>
<td>WebUI - HTTPS</td>
</tr>
<tr>
<td>TCP</td>
<td>25565*</td>
<td>Shuttle service (Centralized/Portal Management)</td>
</tr>
</tbody>
</table>

Note: The ports used for SSH, GSLB, SNMP, the WebUI, the fallback page, the gateway service and the shuttle service can be changed if required. For more information, please refer to Service Socket Addresses.

6. Deployment Concept

VIP = Virtual IP Address
7. Load Balancer Deployment Methods

For Vue PACS, both layer 4 DR mode and layer 7 SNAT mode are used. These modes are described below and are used for the configurations presented in this guide.

7.1. Layer 7 SNAT Mode

Layer 7 SNAT mode uses a proxy (HAProxy) at the application layer. Inbound requests are terminated on the load balancer and HAProxy generates a new corresponding request to the chosen Real Server. As a result, Layer 7 is typically not as fast as the Layer 4 methods. Layer 7 is typically chosen when either enhanced options such as SSL termination, cookie based persistence, URL rewriting, header insertion/deletion etc. are required, or when the network topology prohibits the use of the layer 4 methods.

- Because layer 7 SNAT mode is a full proxy, any server in the cluster can be on any accessible subnet including across the Internet or WAN.

- Layer 7 SNAT mode is not transparent by default, i.e. the Real Servers will not see the source IP address of the client, they will see the load balancer’s own IP address by default, or any other local appliance IP address if preferred (e.g. the VIP address). This can be configured per layer 7 VIP. If required, the load balancer can be configured to provide the actual client IP address to the Real Servers in 2 ways. Either by inserting a header that contains the client’s source IP address, or by modifying the Source Address field of the IP packets and replacing the IP address of the load balancer with the IP address of the client. For more information on these methods please refer to Transparency at Layer 7.

- Layer 7 SNAT mode can be deployed using either a one-arm or two-arm configuration. For two-arm deployments, eth0 is normally used for the internal network and eth1 is used for the external network although this is not mandatory.

- Requires no mode-specific configuration changes to the load balanced Real Servers.

- Port translation is possible with Layer 7 SNAT mode, e.g. VIP:80 → RIP:8080 is supported.
• You should not use the same RIP:PORT combination for layer 7 SNAT mode VIPs and layer 4 SNAT mode VIPs because the required firewall rules conflict.

8. Configuring Vue PACS for Load Balancing

8.1. Layer 7 SNAT Mode
Layer 7 SNAT mode VIPs do not require any mode specific configuration changes to the load balanced Real Servers (Vue PACS Servers).

9. Load Balancer Appliance Installation & Configuration for Vue PACS

9.1. Overview
For Vue PACS deployments, 2 load balancer appliances must be installed and configured and then paired to create an active/passive HA clustered pair.

The following is an overview of the installation and configuration process:

1. Deploy 2 hardware appliances - refer to Section 9.2
2. Configure the management IP address and other basic settings on both appliances - refer to Section 9.3
3. Run a software update check on both appliances - refer to Section 9.6
4. Configure the appliance security mode on both appliances - refer to Section 9.7
5. Verify network connections and configure any additional settings on both appliances - refer to Section 9.8
6. Configure the required load balanced services on the Primary appliance - refer to Section 9.9
7. Restart services on the Primary appliance - refer to Section 9.9.10
8. Verify that everything is working as expected on the Primary appliance - refer to Section 11
9. Configure the HA Pair on the Primary appliance - this will replicate all load balanced services to the Secondary appliance, once configured the Secondary appliance will be kept in-sync automatically - refer to Section 12
10. Configure any required optional settings on both appliances - refer to Section 13

9.2. Hardware Appliance Installation
Follow the steps below to install 2 appliances, one as the Primary the other as the Secondary.

1. Remove all packaging and rack mount the appliance if required.
2. Connect the power lead.

Note: The power supply is an auto-sensing unit (100v to 240v).
3. Connect network cables from all 4 interfaces (eth0 to eth3) to the relevant switch. All interfaces are configured as a single bond in the following section (Section 9.3).

4. Attach a monitor & keyboard to the appliance.

The above image shows the Enterprise Loadbalancer on the Dell R350. Other supported Philips models include the Enterprise R20, Enterprise 1G and Dell R240.

Once both appliances are installed, connect a serial (heartbeat) cable between them.

Check that mains power is on and power up both appliances. The fans should start & the front panel LEDs should light.

9.3. Configuring Initial Network Settings

After power up, the following startup message is displayed on the appliance console:

```
Welcome to the Loadbalancer.org appliance.
To perform initial network configuration, log in to the console as
Username: setup
Password: setup
To access the web interface and wizard, point your browser at
http://192.168.2.21:9888/
or
https://192.168.2.21:9443/
```

As mentioned in the text, to perform initial network configuration, login as the “setup” user at the appliance console.

Once logged in, the Network Setup Wizard will start automatically. This will enable you to configure the
management IP address and other network settings for the appliance.

login to the console:

Username: setup
Password: setup

A series of screens will be displayed that allow network settings to be configured:

In the **Configure Management IP** screen, leave **Yes** selected and hit <ENTER> to continue.

In the **Peer Recovery** screen, leave **No** selected and hit <ENTER> to continue.

Note
For more details on node recovery using this option please refer to Disaster Recovery After Node (Primary or Secondary) Failure.

In the **Centralized Management** screen, if you have been provided with Management Server details select **Yes**, otherwise leave **No** selected, then hit <ENTER> to continue.

Note
For information on how to modify Centralized Management settings via the WebUI, please refer to Portal Management & Appliance Adoption.
In the **Available Interfaces** screen, a list of available interfaces will be displayed, hit `<ENTER>` to continue.

![Available Interfaces Screen](image)

In the **Configure Bonding** screen, select **Yes** and hit `<ENTER>` to continue.

![Configure Bonding Screen](image)

The **Select Interfaces** screen will be displayed. Using the space bar, select all 4 interfaces for the bond, select **Create** and hit `<ENTER>` to continue.

![Select Interfaces Screen](image)

In the **Set Bond Mode** screen, select **Mode 4 - LACP 802.3ad**, select the **Select** button and hit `<ENTER>` to continue.
In the **Configure a VLAN** screen, leave **No** selected, then hit <ENTER> to continue.

In the **Set IP address** screen, enter the required **Static IP Address & CIDR Prefix** and select **Done** and hit <ENTER> to continue.

A subnet mask such as 255.255.255.0 is not valid, in this case enter 24 instead.

In the **Configure Default Gateway** screen, enter the required **Default Gateway IP Address**, select **Done** and hit <ENTER> to continue.

In the **Configure DNS Servers** screen, configure the required DNS server(s), select **Done** and hit <ENTER> to continue.
In the **Set Password** screen, hit <ENTER> to continue.

Enter the **Password** you'd like to use for the loadbalancer WebUI user account and the root Linux user account. Repeat the password, select **Done** and hit <ENTER> to continue.

If you selected **Yes** when asked if you want to enroll for Centralized Management, you'll now be prompted for the details. Default values for the **Host** and **Port** are set and can be changed if required. Enter the **Username** and **Password** for the management server account you'd like the appliance to be associated with, select **Done** and hit <ENTER> to continue.

In the **Summary** screen, check all settings. If everything is correct, leave **Configure** selected and hit <ENTER> to continue. All settings will be applied. If you need to change a setting, use the **Back** button.
Once the configuration has been written, the **Configuration Complete** screen and message will be displayed. Click **OK** to exit the wizard and return to the command prompt.

9.4. Accessing the Appliance WebUI

The WebUI is accessed using a web browser. By default, users are authenticated using Apache authentication. Users can also be authenticated against LDAP, LDAPS, Active Directory or Radius - for more information, please refer to [External Authentication](#).

1. Using a browser, navigate to the following URL:

 - **Note** You'll receive a warning about the WebUI's SSL certificate. This is due to the default self-signed certificate that is used. If preferred, you can upload your own certificate - for more information, please refer to [Appliance Security Features](#).

 - **Note** If you need to change the port, IP address or protocol that the WebUI listens on, please refer to [Service Socket Addresses](#).

2. Log in to the WebUI using the following credentials:

 Username: loadbalancer
 Password: <configured-during-network-setup-wizard>

 - **Note** To change the password, use the WebUI menu option: **Maintenance > Passwords**.

 Once logged in, the WebUI will be displayed as shown below:
9.4.1. Main Menu Options

System Overview - Displays a graphical summary of all VIPs, RIPS and key appliance statistics

Local Configuration - Configure local host settings such as IP address, DNS, system time etc.

Cluster Configuration - Configure load balanced services such as VIPs & RIPS

Maintenance - Perform maintenance tasks such as service restarts and taking backups

View Configuration - Display the saved appliance configuration settings

Reports - View various appliance reports & graphs

Logs - View various appliance logs

Support - Create a support download, contact the support team & access useful links

Live Chat - Start a live chat session with one of our Support Engineers

9.5. Installing the License Key

The appliance can be used completely unrestricted for 30 days without installing a license key. After 30 days, the appliance continues to work but it’s no longer possible to make configuration changes.

For an unlicensed hardware appliance, the following message is displayed:
To install the license key:

1. Using the WebUI, navigate to: Local Configuration > License Key.

 Install License Key

 This unit is in evaluation mode. Please enter your license key to remove this restriction.

 If you do not have a license key, please contact sales@loadbalancer.org.

 Choose File No file chosen

 Install License Key

2. Click Choose File then browse to and select the license file provided when the appliance was purchased.

3. Click Install License Key.

 Once the license is applied, these warning messages will no longer be displayed.

9.6. Appliance Software Update

To ensure that the appliance(s) are running the latest software version, we recommend a software update check is performed.

9.6.1. Determining the Current Software Version

The software version is displayed at the bottom of the WebUI as shown in the example below:

Copyright © Loadbalancer.org Inc. 2002 – 2024
ENTERPRISE VA Max - v8.11.1

9.6.2. Checking for Updates using Online Update

 By default, the appliance periodically contacts the Loadbalancer.org update server and checks for updates. An update check can also be manually triggered as detailed below.

1. Using the WebUI, navigate to: Maintenance > Software Update.

2. Select Online Update.

3. If the latest version is already installed, a message similar to the following will be displayed:
4. If an update is available, you'll be presented with a list of new features, improvements, bug fixes and security related updates.

5. Click **Online Update** to start the update process.

- **Note**: Do not navigate away whilst the update is ongoing, this may cause the update to fail.

6. Once complete (the update can take several minutes depending on download speed and upgrade version) the following message will be displayed:

 Information: Update completed successfully.

7. If services need to be reloaded/restarted or the appliance needs a full restart, you'll be prompted accordingly.

9.6.3. Using Offline Update

If the load balancer does not have access to the Internet, offline update can be used.

- **Note**: Please contact support@loadbalancer.org to check if an update is available and obtain the latest offline update files.

To perform an offline update:

1. Using the WebUI, navigate to: **Maintenance > Software Update**.
2. Select **Offline Update**.
3. The following screen will be displayed:

 Software Update

 Offline Update

 The following steps will lead you through offline update.

 1. Contact loadbalancer.org support to obtain the offline update archive and checksum.
 2. Save the archive and checksum to your local machine.
 3. Select the archive and checksum files in the upload form below.
 4. Click **Upload and Install** to begin the update process.

 Archive: Choose File No file chosen
 Checksum: Choose File No file chosen

 Upload and Install
4. Select the Archive and Checksum files.

5. Click Upload and Install.

6. If services need to be reloaded/restarted or the appliance needs a full restart, you’ll be prompted accordingly.

9.7. Appliance Security Mode Configuration

To enable shell commands to be run from the WebUI and to enable SSH access, the appliance Security Mode must be configured:

1. Using the WebUI, navigate to: Local Configuration > Security.
2. Set Appliance Security Mode to Custom.
3. If SSH access is required, un-check Disable SSH Password Access.
4. Click Update.

9.8. Appliance Network Configuration

The standard Vue PACS network configuration uses all 4 network adapters configured as an LACP 802.3ad bonded interface.

9.8.1. Verify Network Connections

1. Verify that all 4 network adapters are connected to the appropriate switch.
2. Using the WebUI, navigate to: Local Configuration > Network Interface Configuration.

3. Verify that the network is configured as required.

Note: The IP address/CIDR prefix for bond0 was set during the Network Setup Wizard and will be shown here, e.g. 10.224.94.45/24.

Note: If you need to configure VLANs, modify the default gateway, configure static routes or configure...
9.8.2. Configuring a floating IP Address for use as a Default Gateway
For layer 7 SNAT mode VIPs with TProxy (transparency) enabled, the load balancer must be the default gateway for the Real Servers. When using a clustered pair, a floating IP address must be used as the default gateway for the Real Servers to allow the gateway address to be brought up on either appliance. This should be a spare, unused IP in the same subnet as the Real Servers.

1. Using the Appliance WebUI, navigate to: Cluster Configuration > Floating IPs.
2. Enter the required address in the New Floating IP field, e.g. 10.224.94.250.
3. Click Add Floating IP.

(Important) The default gateway for each Real Server associated with the following VIP must be configured to be this floating IP address:
• VIP 1 - DICOM_VIP

9.8.3. Configuring Hostname & DNS
1. Using the WebUI, navigate to: Local Configuration > Hostname & DNS.
2. Set the required Hostname and Domain Name.
3. Configure additional DNS servers if required.
4. Click Update.

9.8.4. Configuring NTP
1. Using the WebUI, navigate to: Local Configuration > System Date & Time.
2. Select the required System Timezone.
3. Navigate to the first field in the NTP Servers section, specify the IP address of an appropriate NTP server used at the site.
4. Click Set Timezone & NTP.

9.9. Configuring Load Balanced Vue PACS Services

9.9.1. VIP 1 - DICOM_VIP
9.9.1.1. Virtual Service (VIP) Configuration

1. Using the WebUI, navigate to *Cluster Configuration > Layer 7 – Virtual Services* and click *Add a new Virtual Service*.

2. Enter the following details:

<table>
<thead>
<tr>
<th>Virtual Service</th>
<th>[Advanced +]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>DICOM_VIP</td>
</tr>
<tr>
<td>IP Address</td>
<td>10.224.94.10</td>
</tr>
<tr>
<td>Ports</td>
<td>2104</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP Mode</td>
</tr>
</tbody>
</table>

- Specify an appropriate *Label* for the Virtual Service, e.g. **DICOM_VIP**.
- Set the *Virtual Service IP Address* field to the required IP address, e.g. **10.224.94.10**.
- Set the *Ports* field to **2104**.

Note:

- If additional ports are needed, use a comma between each port number, e.g. **104,2104**. If the associated Real Server’s port is left blank, connections will be passed through on the same port. If a Real Server port is specified, e.g. **2104** all connections will be forwarded to that port.

- Set the *Layer 7 Protocol* to **TCP Mode**.

3. Click *Update* to create the Virtual Service.

4. Now click *Modify* next to the newly created VIP.

5. Scroll to the *Fallback Server* section.
 - Set the *IP Address* to the address of the Secondary WFM Server, e.g. **10.224.94.101**.
 - Set the *Port* to **2104**.

6. Scroll to the *Other* section and click *[Advanced]*.
 - Enable (check) the *Transparent Proxy* checkbox.

7. Leave all other settings at their default value.

8. Click *Update*.

9.9.1.2. Define the Associated Real Servers (RIPS)

1. Using the WebUI, navigate to: *Cluster Configuration > Layer 7 – Real Servers* and click *Add a new Real Server* next to the newly created VIP.
2. Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>WFM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>10.224.94.100</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>2104</td>
</tr>
<tr>
<td>Re-Encrypt to Backend</td>
<td>No</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
</tbody>
</table>

- Specify an appropriate **Label** for the RIP, e.g. **WFM1**.
- Set the **Real Server IP Address** field to address of the Primary WFM Server, e.g. **10.224.94.100**.
- Set the **Real Server Port** field to **2104**.

3. Leave all other settings at their default value.

4. Click **Update**.

Important
The default gateway of the primary and secondary WFM servers must be set to be the load balancer. Specify the floating IP address that was configured in Section 9.8.2.

9.9.2. VIP 2 - DMWL_VIP

9.9.2.1. Virtual Service (VIP) Configuration

1. Using the WebUI, navigate to **Cluster Configuration > Layer 7 – Virtual Services** and click **Add a new Virtual Service**.

2. Enter the following details:

<table>
<thead>
<tr>
<th>Virtual Service</th>
<th>[Advanced +]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>DMWL_VIP</td>
</tr>
<tr>
<td>IP Address</td>
<td>10.224.94.12</td>
</tr>
<tr>
<td>Ports</td>
<td>3320</td>
</tr>
</tbody>
</table>

- Specify an appropriate **Label** for the Virtual Service, e.g. **DMWL_VIP**.
- Set the **Virtual Service IP Address** field to the required IP address, e.g. 10.224.94.12.
- Set the **Ports** field to 3320.
- Set the **Layer 7 Protocol** to TCP Mode.

3. Click **Update** to create the Virtual Service.

4. Now click **Modify** next to the newly created VIP.

5. Scroll to the **Other** section and click **[Advanced]**.
 - Enable (check) the **Timeout** checkbox.
 - Set **Client Timeout** and **Real Server Timeout** to 15m (15 minutes).

6. Leave all other settings at their default value.

7. Click **Update**.

9.9.2.2. Define the Associated Real Servers (RIPs)

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created VIP.

2. Enter the following details:

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>EIS1</td>
</tr>
<tr>
<td>Real Server IP Address</td>
<td>10.224.94.100</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>3320</td>
</tr>
<tr>
<td>Re-Encrypt to Backend</td>
<td>False</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
</tbody>
</table>

- Specify an appropriate **Label** for the RIP, e.g. **EIS1**.
- Set the **Real Server IP Address** field to address of the Primary EIS Server, e.g. 10.224.94.100.
- Set the **Real Server Port** field to 3320.

3. Leave all other settings at their default value.

4. Repeat these steps to add the remaining EIS server(s)

5. Click **Update**.

9.9.3. VIP 3 - PORTAL_VIP

9.9.3.1. Configure the Custom Health Check

A custom health check is required to enable port 443 on the portal and also port 7070 or 11111 on the primary WFM to be checked. In this way, if the portal or the WFM port is down, automatic failover to the standby WFM will occur. The script is shown below:
#!/bin/bash
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/root/

Variables passed to the health check script.
$1 = VIP Address
$2 = VIP Port
$3 = Real Server IP
$4 = Real Server Port

Script Variables.
AGENT_IP=10.3.147.27
AGENT_PORT=11111
CHECK_PORTAL_URL=/portal/WebLogin.aspx?force_all_browsers=true
CHECK_PORTAL_URL_RESPONSE=
EXPECTED_PORTAL_URL_RESPONSE=200
CHECK_TIMEOUT=5

nc -w $CHECK_TIMEOUT -zvn $AGENT_IP $AGENT_PORT &>/dev/null
AGENT_RESPONSE=$?

if [["$AGENT_RESPONSE" == "0"]]
then
 if [$(curl -k -m $CHECK_TIMEOUT -o /dev/null -s -w "%{http_code}\n" https://$3:$4 /CHECK_PORTAL_URL) == "$EXPECTED_PORTAL_URL_RESPONSE"]
 then
 ec=0
 else
 ec=20
 fi
else
 ec=10
fi
exit $ec

Note

The AGENT_IP and AGENT_PORT variables must be edited and set to the correct values.

To add this custom script to the load balancer:

1. Using the WebUI, navigate to Cluster Configuration > Layer 7 – Health Check Scripts and click Add a new Virtual Service.
2. Click Add New Health Check.
3. Enter the following details:

<table>
<thead>
<tr>
<th>Health Check Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Philips_Multi_Check</td>
</tr>
<tr>
<td>Type: Virtual Service</td>
</tr>
<tr>
<td>Template: Example</td>
</tr>
</tbody>
</table>
- Set the **Name** to **Philips_Multi_Check**.
- Leave the **Type** drop-down set to **Virtual Service**.
- Copy the script above into the edit window overwriting all current content.
- Set the **AGENT_IP** and **AGENT_PORT** variables to the correct values.

4. Click **Update** to save the new health check script.

9.9.3.2. Virtual Service (VIP) Configuration

1. Using the WebUI, navigate to **Cluster Configuration > Layer 7 – Virtual Services** and click **Add a new Virtual Service**.

2. Enter the following details:

```
Virtual Service
Label: PORTAL_VIP
IP Address: 10.224.94.14
Ports: 80
Protocol
Layer 7 Protocol: HTTP Mode
```

- Specify an appropriate **Label** for the Virtual Service, e.g. **PORTAL_VIP**.
- Set the **Virtual Service IP Address** field to the required IP address, e.g. **10.224.94.14**.
- Set the **Ports** field to **80**.
- Set the **Layer 7 Protocol** to **HTTP Mode**.

3. Click **Update** to create the Virtual Service.

4. Now click **Modify** next to the newly created VIP.

5. Scroll to the **Protocol** section and click [Advanced].

- Enable (check) the **Reuse Idle HTTP Connections** checkbox.

6. Scroll to the **Fallback Server** section.

- **If the standby site has a single portal server:**
 - Set the **IP Address** to the address of the standby portal server, e.g. **10.224.94.120**.
 - Set the **Port** to **80**.

- **If the standby site has multiple portal servers:**
 - Set the **IP Address** to the address of **VIP 4 (PORTAL_VIP_STANDY)**, e.g. **10.224.94.16**.
7. Scroll to the Health Checks section.
 - Set the Check Type to External Script.
 - Set the Check Script to the custom health check created previously, e.g. Philips_Multi_Check.

8. Scroll to the ACL Rules section.

9. Using the Add Rule button, add the following ACL rules:

 - **Rule 1**
 - Type: path_beg
 - Bool: Equals
 - URL/Text: -m reg \[^a-zA-Z]chat[^a-zA-Z]
 - Action: Use Backend
 - Location/Value: CHAT

 - **Rule 2**
 - Type: path_beg
 - Bool: Equals
 - URL/Text: -m reg \[^a-zA-Z]syscfg[^a-zA-Z]
 - Action: Use Backend
 - Location/Value: CHAT

10. Leave all other settings at their default value.

11. Click Update.

9.9.3.3. Define the Associated Real Servers (RIPs)

1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Real Servers and click Add a new Real Server next to the newly created VIP.

2. Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>Portal1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>10.224.94.110</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>443</td>
</tr>
<tr>
<td>Re-Encrypt to Backend</td>
<td>✓</td>
</tr>
<tr>
<td>Enable Redirect</td>
<td>□</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
</tbody>
</table>
• Specify an appropriate *Label* for the RIP, e.g. **Portal1**.

• If the primary site has a single portal server:
 • Set the *Real Server IP Address* field to the address of the primary portal server, e.g. **10.224.94.110**.
 • Set the *Real Server Port* field to **443**.
 • Enable (check) **Re-Encrypt to Backend**.
 • Leave all other settings at their default value.

• If the primary site has multiple portal servers:
 • Set the *Real Server IP Address* field to the address of the first portal server, e.g. **10.224.94.110**.
 • Set the *Real Server Port* field to **443**.
 • Enable (check) **Re-Encrypt to Backend**.
 • Leave all other settings at their default value.
 • Repeat these steps to add the remaining portal server(s).

3. Click **Update**.

9.9.3.4. Upload the SSL Certificate

Note

If the production certificate is not currently available, continue to the next section (configuring SSL Termination) and leave **SSL Certificate** set to **Default Self Signed Certificate**. Once you have the production certificate, follow the steps in this section to upload the certificate and then navigate to *Cluster Configuration > SSL Termination*, click **Modify** next to the SSL termination, change **SSL Certificate** to the new certificate and click **Update**.

1. Using the WebUI, navigate to *Cluster Configuration > SSL Certificate* and click **Add a new SSL Certificate**.

2. Select the option **Upload prepared PEM/PFX file**.

3. Enter the following details:

 - **Label**: **PORTAL_CERT**
 - **File to upload**: Choose File **portal-cert.pem**

• Specify an appropriate *Label*, e.g. **PORTAL_CERT**.

• Click **Choose File**.

• Browse to and select the relevant PEM or PFX file.
- For PFX files specify the password if required.

4. Click **Upload Certificate**.

Note

If you don't have a certificate and want to create a Certificate Signing Request (CSR) on the load balancer, please refer to **Generating a CSR on the Load Balancer**.

9.9.3.5. Configuring SSL Termination

1. Using the WebUI, navigate to **Cluster Configuration > SSL Termination** and click **Add a new Virtual Service**.

2. Enter the following details:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>SSL-PORTAL_VIP</td>
</tr>
<tr>
<td>Associated Virtual Service</td>
<td>PORTAL_VIP</td>
</tr>
<tr>
<td>Virtual Service Port</td>
<td>443</td>
</tr>
<tr>
<td>SSL Operation Mode</td>
<td>High Security</td>
</tr>
<tr>
<td>SSL Certificate</td>
<td>portal_cert</td>
</tr>
<tr>
<td>Source IP Address</td>
<td></td>
</tr>
<tr>
<td>Enable Proxy Protocol</td>
<td></td>
</tr>
<tr>
<td>Bind Proxy Protocol to L7 VIP</td>
<td>PORTAL_VIP</td>
</tr>
</tbody>
</table>

- Using the **Associated Virtual Service** drop-down, select the Virtual Service created previously, e.g. PORTAL_VIP.

Note

Once the VIP is selected, the **Label** field will be auto-populated with **SSL-PORTAL_VIP**. This can be changed if preferred.

- Ensure that the **Virtual Service Port** is set to **443**.

- Leave **SSL Operation Mode** set to **High Security**.

- Select the **SSL certificate** uploaded previously, e.g. portal_cert.

3. Leave all other settings at their default value.

4. Click **Update**.

9.9.4. VIP 3-B1 - Chat

9.9.4.1. Virtual Service (VIP) Configuration

1. Using the WebUI, navigate to **Cluster Configuration > Layer 7 – Virtual Services** and click **Add a new Virtual Service**.

2. Click **[Advanced]**.
3. Enter the following details:

<table>
<thead>
<tr>
<th>Virtual Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual Configuration</td>
<td></td>
</tr>
<tr>
<td>Create Backend Only</td>
<td>✔️</td>
</tr>
<tr>
<td>Label</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td></td>
</tr>
<tr>
<td>Layer 7 Protocol</td>
<td>HTTP Mode</td>
</tr>
</tbody>
</table>

- Select (Check) **Create Backend Only**.
- Specify an appropriate **Label** for the Virtual Service, e.g. **CHAT**.
- Set the **Layer 7 Protocol** to **HTTP Mode**.

4. Click **Update** to create the Virtual Service.

5. Now click **Modify** next to the newly created VIP.

6. Scroll to the **Persistence** section.

 - Set **Persistence Mode** to **None**.

7. Scroll to the **Health Checks** section.

 - Set the **Check Type** to **Negotiate HTTPS (GET)**.

8. Leave all other settings at their default value.

9. Click **Update**.

9.9.4.2. Define the Associated Real Servers (RIPs)

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created VIP.

2. Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>chat1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>10.224.94.100</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>443</td>
</tr>
<tr>
<td>Re-Encrypt to Backend</td>
<td>✔️</td>
</tr>
<tr>
<td>Enable Redirect</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
</tbody>
</table>

9.9.4.2. Define the Associated Real Servers (RIPs)
• Specify an appropriate Label for the RIP, e.g. chat1.
• Set the Real Server IP Address field to address of the Primary WFM Server, e.g. 10.224.94.100.
• Set the Real Server Port field to 443.

3. Leave all other settings at their default value.
4. Repeat these steps to add a second portal server.
5. Click Update.

9.9.4.3. Customize the Configuration

All chat and syscfg traffic should be handled by the primary portal server. If this server fails, the second portal server should take over. It’s not currently possible to define a fallback server directly in the WebUI for a backend only VIP, so a manual configuration is needed:

1. Using the WebUI, navigate to View Configuration > Layer 7.
2. Scroll down to the section that starts with "Backend CHAT".
3. Now copy the entire configuration for the VIP as shown below:

```plaintext
backend CHAT
    id 1220791148
    mode http
    balance leastconn
    option httpchk GET / HTTP/1.0
    acl :connection_via_termination always_false
    option http-keep-alive
    timeout http-request 5s
    option forwardfor
    timeout tunnel 1h
    option redispacht
    option abortonclose
    server Chat1 10.224.94.110:443 id 2 weight 100 check check-ssl verify none inter 4000 rise 2 fall 2 slowstart 8000 minconn 0 maxconn 0 on-marked-down shutdown-sessions ssl verify none sni req.hdr(host)
    server Chat2 10.224.94.111:443 id 3 weight 100 check check-ssl verify none inter 4000 rise 2 fall 2 slowstart 8000 minconn 0 maxconn 0 on-marked-down shutdown-sessions ssl verify none sni req.hdr(host)
```

5. Click Modify next to the CHAT VIP.
6. In the Virtual Service section at the top of the page, click [Advanced] and enable (check) the Manual Configuration checkbox.
7. Click Update.
9. Paste the VIP’s configuration into the edit window and add following text to the end of the last line:

```plaintext
backup
```
As shown in bold below:

```bash
backend CHAT
  id 1220791148
  mode http
  balance leastconn
  option httpchk GET / HTTP/1.0
  acl :connection_via_termination always_false
  option http-keep-alive
  timeout http-request 5s
  option forwardfor
  timeout tunnel 1h
  option red派遣
  option abortonclose

  server Chat1 10.224.94.110:443 id 2 weight 100 check check-ssl verify none inter 4000
  rise 2 fall 2 slowstart 8000 minconn 0 maxconn 0 on-marked-down shutdown-sessions ssl
  verify none sni req.hdr(host)
  server Chat2 10.224.94.111:443 id 3 weight 100 check check-ssl verify none inter 4000
  rise 2 fall 2 slowstart 8000 minconn 0 maxconn 0 on-marked-down shutdown-sessions ssl
  verify none sni req.hdr(host) backup
```

10. Click Update.

Note Creating the VIP in the normal way and then converting it to a Manual Configuration ensures the VIP and associated Real Server(s) can be viewed in the appliance WebUI.

9.9.5. VIP 4 - PORTAL_VIP_STANDBY

Note This VIP is only required when there is a secondary site and that site has multiple Portal servers. If the standby site has a single server VIP 4 is not needed.

9.9.5.1. Configure the Custom Health Check

A custom health check is required to enable port 443 on the portal AND also 7070 or 11111 to the primary WFM to be checked. In this way, if the portal or the WFM port (either 7070 or 11111) is down, automatic failover to the standby WFM will occur. The script is shown below:

```bash
#!/bin/bash

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:
AGENT_IP="10.3.147.27"
AGENT_PORT="11111"
CHECK_PORTAL_URL="/portal/WebLogin.aspx?force_all_browsers=true"
EXPECTED_PORTAL_URL_RESPONSE=""
CHECK_PORTAL_URL_RESPONSE="200"
CHECK_TIMEOUT=5
```
The AGENT_IP and AGENT_PORT variables must be edited and set to the correct values.

To add this custom script to the load balancer:

1. Using the WebUI, navigate to Cluster Configuration > Layer 7 – Health Check Scripts and click Add a new Virtual Service.
2. Click Add New Health Check.
3. Enter the following details:

 - Set the Name to Philips_Multi_Check_Standby.
 - Leave the Type drop-down set to Virtual Service.
 - Copy the script above into the edit window over writing all current content.
 - Set the AGENT_IP and AGENT_PORT variables to the correct values.
4. Click Update to save the new health check script.

9.9.5.2. Virtual Service (VIP) Configuration

1. Using the WebUI, navigate to Cluster Configuration > Layer 7 – Virtual Services and click Add a new Virtual Service.
2. Enter the following details:
- Specify an appropriate *Label* for the Virtual Service, e.g. **PORTAL_VIP_STANDBY**.
- Set the **Virtual Service IP Address** field to the required IP address, e.g. **10.224.94.16**.
- Set the **Ports** field to **80**.
- Set the **Layer 7 Protocol** to **HTTP Mode**.

3. Click **Update** to create the Virtual Service.

4. Now click **Modify** next to the newly created VIP.

5. Scroll to the **Protocol** section and click **[Advanced]**.
 - Enable (check) the **Reuse Idle HTTP Connections** checkbox.

6. Scroll to the **Health Checks** section.
 - Set the **Check Type** to **External Script**.
 - Set the **Check Script** to the custom health check created previously, e.g. **Philips_Multi_Check_Standby**.

7. Scroll to the **ACL Rules** section.

8. Using the **Add Rule** button, add the following ACL rules:
 - **Rule 1**

Type	path_beg
Bool	Equals
URL/Text	-m reg [*a-zA-Z]chat[*a-zA-Z]
Action	Use Backend
Location/Value	CHAT_STANDBY

 - **Rule 2**

Type	path_beg
Bool	Equals
URL/Text	-m reg [*a-zA-Z]syscfg[*a-zA-Z]
Action	Use Backend
Location/Value	CHAT_STANDBY
9. Leave all other settings at their default value.

10. Click Update.

9.9.5.3. Define the Associated Real Servers (RIPs)

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created VIP.

2. Enter the following details:

 ![Real Server Configuration Table]

 - **Specify an appropriate Label** for the RIP, e.g. **Portal-Standby1**.
 - **If the standby site has a single portal server:**
 - Set the **Real Server IP Address** field to the address of the primary portal server, e.g. **10.224.94.115**.
 - Set the **Real Server Port** field to **443**.
 - Enable (check) **Re-Encrypt to Backend**.
 - Leave all other settings at their default value.
 - **If the standby site has multiple portal servers:**
 - Set the **Real Server IP Address** field to the address of the first portal server, e.g. **10.224.94.115**.
 - Set the **Real Server Port** field to **443**.
 - Enable (check) **Re-Encrypt to Backend**.
 - Leave all other settings at their default value.
 - Repeat these steps to add the remaining portal server(s).

3. Click **Update**.

9.9.5.4. Upload the SSL Certificate

If the production certificate is not currently available, continue to the next section (configuring SSL Termination) and leave **SSL Certificate** set to **Default Self Signed Certificate**. Once you have the production certificate, follow the steps in this section to upload the certificate and then navigate to **Cluster Configuration > SSL Termination**, click **Modify** next to the SSL termination.
1. Using the WebUI, navigate to *Cluster Configuration > SSL Certificate* and click *Add a new SSL Certificate*.

2. Select the option *Upload prepared PEM/PFX file*.

3. Enter the following details:

 - Specify an appropriate *Label*, e.g. *PORTAL_STANDBY_CERT*.
 - Click *Choose File*.
 - Browse to and select the relevant PEM or PFX file.
 - For PFX files specify the password if required.

4. Click *Upload Certificate*.

 Note If you don’t have a certificate and want to create a Certificate Signing Request (CSR) on the load balancer, please refer to *Generating a CSR on the Load Balancer*.

9.9.5.5. Configuring SSL Termination

1. Using the WebUI, navigate to *Cluster Configuration > SSL Termination* and click *Add a new Virtual Service*.

2. Enter the following details:
Using the **Associated Virtual Service** drop-down, select the Virtual Service created previously, e.g. **PORTAL_VIP_STANDBY**.

Once the VIP is selected, the **Label** field will be auto-populated with **SSL-PORTAL_VIP_STANDBY**. This can be changed if preferred.

- Ensure that the **Virtual Service Port** is set to **443**.
- Leave **SSL Operation Mode** set to **High Security**.
- Select the **SSL certificate** uploaded previously, e.g. **portal_cert**.

3. Leave all other settings at their default value.
4. Click **Update**.

9.9.6. VIP 4-B1 - CHAT_STANDBY

9.9.6.1. Virtual Service (VIP) Configuration

1. Using the WebUI, navigate to **Cluster Configuration > Layer 7 – Virtual Services** and click **Add a new Virtual Service**.
2. Click **[Advanced]**.
3. Enter the following details:
4. Click **Update** to create the Virtual Service.

5. Now click **Modify** next to the newly created VIP.

6. Scroll to the **Persistence** section.
 - Set **Persistence Mode** to **None**.

7. Scroll to the **Health Checks** section.
 - Set the **Check Type** to **Negotiate HTTPS (GET)**.

8. Leave all other settings at their default value.

9. Click **Update**.

9.9.6.2. Define the Associated Real Servers (RIPs)

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created VIP.

2. Enter the following details:
Specify an appropriate Label for the RIP, e.g. chat_standby1.

- Set the Real Server IP Address field to address of the standby WFM Server, e.g. 10.224.94.115.
- Set the Real Server Port field to 443.

3. Leave all other settings at their default value.
4. Repeat these steps to add a second portal server.
5. Click Update.

9.9.6.3. Customize the Configuration

All chat and syscfg traffic should be handled by the primary portal server. If this server fails, the second portal server should take over. It’s not currently possibly to define a fallback server directly in the WebUI for a backend only VIP, so a manual configuration is needed:

1. Using the WebUI, navigate to View Configuration > Layer 7.
2. Scroll down to the section that starts with "Backend CHAT_STANDBY".
3. Now copy the entire configuration for the VIP as shown below:

```
backend CHAT_STANDBY
    id 1220791148
    mode http
    balance leastconn
    option httpchk GET / HTTP/1.0
    acl :connection_via_termination always_false
    option http-keep-alive
    timeout http-request 5s
    option forwardfor
    timeout tunnel 1h
    option redispacht
    option abortonclose
    server Chat1 10.224.94.115:443 id 2  weight 100  check  check-ssl verify none inter 4000
      rise 2  fall 2  slowstart 8000 minconn 0  maxconn 0  on-marked-down shutdown-sessions ssl
      verify none sni req.hdr(host)
    server Chat2 10.224.94.116:443 id 3  weight 100  check  check-ssl verify none inter 4000
      rise 2  fall 2  slowstart 8000 minconn 0  maxconn 0  on-marked-down shutdown-sessions ssl
      verify none sni req.hdr(host)
```

5. Click Modify next to the CHAT VIP.
6. In the Virtual Service section at the top of the page, click [Advanced] and enable (check) the Manual Configuration checkbox.
7. Click Update.
9. Paste the VIP’s configuration into the edit window and add following text to the end of the last line:

```
backup
```
As shown in bold below:

```
backend CHAT_STANDBY
  id 1220791148
  mode http
  balance leastconn
  option httpchk GET / HTTP/1.0
  acl :connection_via_termination always_false
  option http-keep-alive
  timeout http-request 5s
  option forwardfor
  timeout tunnel 1h
  option redispatch
  option abortonclose
    server Chat1 10.224.94.110:443 id 2  weight 100  check  check-ssl verify none inter 4000 rise 2  fall 2  slowstart 8000 minconn 0  maxconn 0  on-marked-down shutdown-sessions ssl verify none sni req.hdr(host)
    server Chat2 10.224.94.111:443 id 3  weight 100  check  check-ssl verify none inter 4000 rise 2  fall 2  slowstart 8000 minconn 0  maxconn 0  on-marked-down shutdown-sessions ssl verify none sni req.hdr(host) backup
```

10. Click Update.

Note Creating the VIP in the normal way and then converting it to a Manual Configuration ensures the VIP and associated Real Server(s) can be viewed in the appliance WebUI.

9.9.7. VIP 5 - CLIENT_VIP

9.9.7.1. Virtual Service (VIP) Configuration

1. Using the WebUI, navigate to *Cluster Configuration > Layer 7 – Virtual Services* and click *Add a new Virtual Service*.

2. Enter the following details:

 - Specify an appropriate **Label** for the Virtual Service, e.g. **CLIENT_VIP**.
 - Set the **Virtual Service IP Address** field to the required IP address, e.g. **10.224.94.18**.
Set the *Ports* field to **80,443,514,2104,22104,32338**.

Set the *Layer 7 Protocol* to **TCP Mode**.

3. Click **Update** to create the Virtual Service.

4. Now click **Modify** next to the newly created VIP.

5. Scroll to the *Fallback Server* section.

 - Set the *IP Address* to the address of the Secondary WFM Server, e.g. **10.224.94.101**.
 - Ensure that the *Port* field is left blank.

6. Leave all other settings at their default value.

7. Click **Update**.

9.9.7.2. Define the Associated Real Servers (RIPs)

1. Using the WebUI, navigate to: *Cluster Configuration > Layer 7 – Real Servers* and click **Add a new Real Server** next to the newly created VIP.

2. Enter the following details:

 - Specify an appropriate *Label* for the RIP, e.g. **WFM1**.
 - Set the *Real Server IP Address* field to address of the Primary WFM Server, e.g. **10.224.94.100**.
 - Leave the *Real Server Port* field blank.

3. Leave all other settings at their default value.

4. Click **Update**.

9.9.8. VIP 6 - CLIENT_DB_VIP

Note

This VIP is only needed for *Infoscaler/Veritas* implementations where the backend is made up of 2 core nodes - 1 running the application and 1 running the DB.

9.9.8.1. Virtual Service (VIP) Configuration

1. Using the WebUI, navigate to *Cluster Configuration > Layer 7 – Virtual Services* and click **Add a new Virtual Service**.
2. Enter the following details:

<table>
<thead>
<tr>
<th>Virtual Service</th>
<th>[Advanced +]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>CLIENT_DB_VIP</td>
</tr>
<tr>
<td>IP Address</td>
<td>10.224.94.18</td>
</tr>
<tr>
<td>Ports</td>
<td>1521</td>
</tr>
</tbody>
</table>

- Specify an appropriate Label for the Virtual Service, e.g. `CLIENT_DB_VIP`.
- Set the Virtual Service IP Address field to the required IP address, e.g. `10.224.94.20`.
- Set the Ports field to `1521`.
- Set the Layer 7 Protocol to TCP Mode.

3. Click **Update** to create the Virtual Service.

4. Now click **Modify** next to the newly created VIP.

5. Scroll to the Fallback Server section.
 - Set the IP Address to the address of the Secondary WFM-DB Server, e.g. `10.224.94.106`.
 - Set the Port field to `1521`.

6. Scroll to the Other section and click [Advanced].
 - Enable (check) the Timeout checkbox.
 - Set Client Timeout and Real Server Timeout to `15m` (15 minutes).

7. Leave all other settings at their default value.

8. Click **Update**.

9. Define the Associated Real Servers (RIPs)
 1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Real Servers and click Add a new Real Server next to the newly created VIP.
 2. Enter the following details:
Specify an appropriate **Label** for the RIP, e.g. **WFM-DB1**.

Set the **Real Server IP Address** field to address of the Primary WFM-DB Server, e.g. **10.224.94.105**.

Set the **Real Server Port** field to **1521**.

3. Leave all other settings at their default value.

4. Click **Update**.

9.9.9. VIP 7 - HL7_VIP

9.9.9.1. Virtual Service (VIP) Configuration

1. Using the WebUI, navigate to *Cluster Configuration > Layer 7 – Virtual Services* and click **Add a new Virtual Service**.

2. Enter the following details:

<table>
<thead>
<tr>
<th>Virtual Service</th>
<th>[Advanced +]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>HL7_VIP</td>
</tr>
<tr>
<td>IP Address</td>
<td>10.224.94.22</td>
</tr>
<tr>
<td>Ports</td>
<td>4001,4003,4005,10010</td>
</tr>
</tbody>
</table>

- Specify an appropriate **Label** for the Virtual Service, e.g. **HL7_VIP**.

- Set the **Virtual Service IP Address** field to the required IP address, e.g. **10.224.94.22**.

- Set the **Ports** field to **4001,4003,4005,10010**.

Note

The ports required are site specific, please verify that the port list is correct for the particular site.
• Set the Layer 7 Protocol to TCP Mode.

3. Click Update to create the Virtual Service.

4. Now click Modify next to the newly created VIP.

5. Scroll to the Fallback Server section.
 • Set the IP Address to the address of the Secondary WFM Server, e.g. 10.224.94.101.
 • Ensure that the Port field is left blank.

6. Scroll to the Other section and click [Advanced].
 • Enable (check) the Timeout checkbox.
 • Set Client Timeout and Real Server Timeout to 15m (15 minutes).

7. Leave all other settings at their default value.

8. Click Update.

9.9.9.2. Define the Associated Real Servers (RIPs)

1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Real Servers and click Add a new Real Server next to the newly created VIP.

2. Enter the following details:

 ![Real Server Form]

 • Specify an appropriate Label for the RIP, e.g. WFM1.
 • Set the Real Server IP Address field to address of the Primary WFM Server, e.g. 10.224.94.100.
 • Leave the Real Server Port field blank.

3. Leave all other settings at their default value.

4. Click Update.

9.9.9.3. Customize the Configuration

HL7 connections are typically established in the morning and stay connected throughout the day. When a failover from primary to standby occurs, this connection is moved to the standby server. However, with the default configuration, when the primary is made active again, the active session is NOT disconnected and moved back to the primary server. The HL7 VIP requires a custom configuration to force this:
1. Using the WebUI, navigate to View Configuration > Layer 7.
2. Scroll down to the section that starts with "listen HL7_VIP".
3. Now copy the entire configuration for the VIP as shown below:

```
listen HL7_VIP
  bind 10.224.94.22:4001,10.224.94.22:4003 transparent
  bind 10.224.94.22:4005,10.224.94.22:10010 transparent
  id 969879036
  mode tcp
  balance leastconn
  stick on src
  stick-table type ip size 10240k expire 30m peers loadbalancer_replication
  server backup 10.224.94.101: backup non-stick
  timeout client 15m
  timeout server 15m
  acl :connection_via_termination always_false
  option redispatch
  option abortonclose
  maxconn 40000
  option tcplog
  server WFM1 10.224.94.100 id 2 weight 100 check port 4001 inter 4000 rise 2 fall 2 slowstart 8000 minconn 0 maxconn 0 on-marked-down shutdown-sessions
```

5. Click Modify next to HL7_VIP.
6. In the Virtual Service section at the top of the page, click [Advanced] and enable (check) the Manual Configuration checkbox.
7. Click Update.
9. Paste the VIP’s configuration into the edit window and add following text to the end of the last line:

```
on-marked-up shutdown-backup-sessions
```

As shown in bold below:

```
listen HL7_VIP
  bind 10.224.94.22:4001,10.224.94.22:4003 transparent
  bind 10.224.94.22:4005,10.224.94.22:10010 transparent
  id 969879036
  mode tcp
  balance leastconn
  stick on src
  stick-table type ip size 10240k expire 30m peers loadbalancer_replication
  server backup 10.224.94.101: backup non-stick
  timeout client 15m
  timeout server 15m
  acl :connection_via_termination always_false
  option redispatch
  option abortonclose
  maxconn 40000
  option tcplog
  server WFM1 10.224.94.100 id 2 weight 100 check port 4001 inter 4000 rise 2 fall 2 slowstart 8000 minconn 0 maxconn 0 on-marked-down shutdown-sessions
```
9.9.10. Finalizing the Configuration

To apply the new settings, HAProxy & STunnel must be reloaded. This can be done using the button in the "Commit changes" box at the top of the screen or by using the Restart Services menu option:

1. Using the WebUI, navigate to: Maintenance > Restart Services.
2. Click Reload HAProxy.
3. Click Reload STunnel.

10. Outbound (Iexport) configuration

For layer 7 VIPs, the source IP address of outbound packets from the load balancer to the Real Server is the interface IP address by default. For the configuration presented in this guide, this will be the IP address assigned to bond0.

This can be changed if required - to the VIP address for example by following the steps below.

1. Using the WebUI, navigate to Cluster Configuration > Layer 7 – Virtual Services.
2. Click Modify next to relevant VIP.
3. Scroll down to the Other section and click [Advanced].
4. Enter the required IP address in the Set Source Address field.
5. Click Update.

11. Testing & Verification

For additional guidance on diagnosing and resolving any issues you may have, please also refer to Diagnostics & Troubleshooting.

The System Overview can be accessed via the WebUI. It shows a graphical view of all VIPs & RIPs (i.e. the Vue PACS servers) and shows the state/health of each server as well as the state of each cluster as a whole. The example below shows that all Vue PACS servers are healthy (green) and available to accept connections:
If one of the servers within a cluster fails its health check, that server will be colored red and the cluster will be colored yellow as shown below:

If the services are up (green) verify that clients can connect to the VIPs and access all services.

Note
Make sure that DNS points at the VIPs rather than individual servers.

Once you have completed the verification process, continue to the next section and add a Secondary appliance to form the HA (active/passive) clustered pair.

12. Configuring HA - Adding a Secondary Appliance

Our recommended configuration is to use a clustered HA pair of load balancers to provide a highly available and resilient load balancing solution. We recommend that the Primary appliance is fully configured first, then the Secondary appliance can be added to create an HA pair. Once the HA pair is configured, load balanced services must be configured and modified on the Primary appliance. The Secondary appliance will be automatically kept in sync.
The clustered HA pair uses Heartbeat to determine the state of the other appliance. Should the active device (normally the Primary) suffer a failure, the passive device (normally the Secondary) will take over.

12.1. Non-Replicated Settings

A number of settings are not replicated as part of the Primary/Secondary pairing process and therefore must be manually configured on the Secondary appliance. These are listed by WebUI menu option in the table below:

<table>
<thead>
<tr>
<th>WebUI Main Menu Option</th>
<th>Sub Menu Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Configuration</td>
<td>Hostname & DNS</td>
<td>Hostname and DNS settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Network Interface Configuration</td>
<td>Interface IP addresses, bonding configuration and VLANs</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Routing</td>
<td>Default gateways and static routes</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>System Date & time</td>
<td>Time and date related settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Physical – Advanced Configuration</td>
<td>Various appliance settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Portal Management</td>
<td>Portal management settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Security</td>
<td>Security settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>SNMP Configuration</td>
<td>SNMP settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>Graphing</td>
<td>Graphing settings</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>License Key</td>
<td>Appliance licensing</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Backup & Restore</td>
<td>Local XML backups</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Software Updates</td>
<td>Appliance software updates</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Fallback Page</td>
<td>Fallback page configuration</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Script</td>
<td>Firewall (iptables) configuration</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Firewall Lockdown Wizard</td>
<td>Appliance management lockdown settings</td>
</tr>
</tbody>
</table>

Important Make sure that where any of the above have been configured on the Primary appliance, they're also configured on the Secondary.

12.2. Configuring the HA Clustered Pair

Note If you have already run the firewall lockdown wizard on either appliance, you'll need to ensure that it is temporarily disabled on both appliances whilst performing the pairing process.

1. Deploy a second appliance that will be the Secondary and configure initial network settings.
2. Using the WebUI on the Primary appliance, navigate to: Cluster Configuration > High-Availability Configuration.
3. Specify the IP address and the loadbalancer user's password for the Secondary (peer) appliance as shown in the example above.

4. Click Add new node.

5. The pairing process now commences as shown below:

6. Once complete, the following will be displayed on the Primary appliance:

7. To finalize the configuration, restart heartbeat and any other services as prompted in the "Commit changes" message box at the top of the screen.
Clicking the Restart Heartbeat button on the Primary appliance will also automatically restart heartbeat on the Secondary appliance.

For more details on configuring HA with 2 appliances, please refer to Appliance Clustering for HA.

For details on testing and verifying HA, please refer to Clustered Pair Diagnostics.

13. Optional Appliance Configuration

13.1. SNMP Configuration
The appliance supports SNMP v1, v2 and v3.

To configure SNMP:

1. Using the WebUI, navigate to: Local Configuration > SNMP Configuration.

2. Enable the required SNMP version(s).

3. Enter the required SNMP location and SNMP contact.

4. For SNMP v1 & v2:
5. For SNMP v3:
 - Specify the **USM Username**.
 - Select the required **USM Authorization Algorithm**.
 - Specify the **USM Authorization Passphrase**, it should be at least 8 characters.
 - Select the required **USM Privacy Algorithm**.
 - Specify **USM Privacy Passphrase**, it should be at least 8 characters.

6. Click **Update**.

7. Restart SNMPD using the **Restart SNMPD** button at the top of the screen.

Note
Valid characters for the *Community string, USM Username, USM Authorization Passphrase* and *USM Privacy Passphrase* fields are: `a-z A-Z 0-9 [] # _ * ! = - $ % ? { } @ : ; ^`

Note
For more information about the various OIDs and associated MIBs supported by the appliance, please refer to **SNMP Reporting**.

Note
If you need to change the port, IP address or protocol that SNMP listens on, please refer to **Service Socket Addresses**.

13.2. Configuring Email Alerts for Virtual Services

Email alerts can be configured for layer 4 and layer 7 Virtual Services. This enables emails to be sent when one or more of the associated Real Servers fail their health check and also when they subsequently start to pass their health check.

13.2.1. Layer 4

For layer 4 Virtual Services, settings can be configured globally for all VIPs or individually per VIP.

13.2.1.1. Global Layer 4 Email Settings

Once configured, these settings apply to all layer 4 VIPs by default.

To configure global email alert settings for layer 4 services:

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 4 Advanced Configuration**.
2. Enter an appropriate email address in the **Email Alert Source Address** field.

 e.g. lb1@loadbalancer.org

3. Enter an appropriate email address in the **Email Alert Destination Address** field.

 e.g. alerts@loadbalancer.org

4. Click **Update**.

13.2.1.2. VIP Level Settings

Note

VIP level settings override the global settings.

Once configured, these settings apply to the individual VIP.

To configure VIP level email alerts:

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 4 Virtual Service** and click **Modify** next to the VIP to be configured.

2. Scroll down to the **Fallback Server** section.

3. Enter an appropriate email address in the **Email Alert Destination Address** field.

 e.g. alerts@loadbalancer.org

4. Click **Update**.

Note

You can set the **Email Alert Source Address** field as explained above if required to configure a default source address.
13.2.2. Layer 7

For layer 7 services, email settings are configured globally for all VIPs.

To configure global email alert settings for layer 7 services:

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 Advanced Configuration**.

 - **eMail Alert From**: Enter an appropriate email address in the *eMail Alert From* field.
 - e.g. lb1@loadbalancer.org
 - **eMail Alert To**: Enter an appropriate email address in the *eMail Alert To* field.
 - e.g. alerts@loadbalancer.org
 - **eMail Server Address**: Enter an appropriate IP address/FQDN in the *eMail Server Address* field.
 - e.g. mail.loadbalancer.org
 - **eMail Server Port**: Enter an appropriate port in the *eMail Server Port* field.
 - e.g. 25

2. Click **Update**.

13.3. Configuring Email Alerts for Heartbeat

Email alerts can be setup for heartbeat once a clustered pair has been configured. This enables alerts to be sent when the primary/secondary communication state has changed. This can occur when the secondary appliance takes over from the primary, when the primary takes over from the secondary and also when there is a communication issue between the 2 appliances.

To configure email alert settings for Heartbeat:

1. Using the WebUI, navigate to: **Cluster Configuration > Heartbeat Configuration**.
2. Scroll down to the **Email Alerts** section.
3. Enter an appropriate email address in the Email Alert Destination Address field.

4. Enter an appropriate email address in the Email Alert Source Address field.

5. Click Modify Heartbeat Configuration.

13.4. Configuring a Smart Host (SMTP relay)

For Heartbeat (and layer 4 services), email alerts are sent from the load balancer directly to the mail server defined in the destination domain’s DNS MX record by default. Alternatively, a custom smart host (mail relay server) can be specified. A smart host is an email server through which approved devices can send emails. Where possible, we recommend that you use a smart host for email alerts as this often helps improve the deliverability of emails.

To configure a Smart Host:

1. Using the WebUI, navigate to: Local Configuration > Physical - Advanced Configuration.

2. Scroll down to the SMTP Relay section.

3. Specify the FQDN or IP address of the Smart Host.

4. Click Update.

Note: By default the Smart Host is set as the destination email domain’s DNS MX record when the Email Alert Destination Address is configured. It must either be left at its default setting or a custom smart host must be configured to enable email alerts to be sent.

14. Technical Support

If you require any assistance please contact support@loadbalancer.org.

15. Further Documentation

For additional information, please refer to the Administration Manual.
16. Appendix

16.1. Configuring VLAN Interfaces

If the deployment requires the load balancer to be connected to multiple tagged VLANs, these must be configured on the appliance and an IP address must be set for each.

To configure a VLAN:

1. Using the appliance WebUI navigate to: Local Configuration > Network Interface Configuration.
2. Scroll down to the VLAN section.
3. Select the appropriate network adapter in the Interface dropdown.

 Note: If you have run through the network configuration wizard and have not configured any additional network adapters then eth0 should be selected.

4. Enter the appropriate VLAN ID, e.g. 825.
5. Enter an appropriate IP address for the appliance within the VLAN, e.g. 10.200.100.50/24.
6. Click Add VLAN.
7. If required, repeat these steps to configure additional VLAN interfaces.

16.2. Configuring the Default Gateway

The default gateway is configured during the network setup wizard. If this needs to be changed follow the steps below.
1. Using the appliance WebUI navigate to: **Local Configuration > Routing**.

2. Set the required gateway address.

3. Click **Configure Routing**.

16.3. Traffic Routing Options

The load balancer enables static routes and Policy Based Routing (PBR) to be configured. Static routes can be used where it makes sense for the rule to be based on the destination, PBR can be used when it makes sense for the rule to be based on the source.

16.3.1. Configuring Static Routes

Using the WebUI menu option: **Local Configuration > Routing** the following static route could be added to the load balancer:

<table>
<thead>
<tr>
<th>Subnet</th>
<th>via gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.250.100.0/24</td>
<td>10.224.94.252</td>
</tr>
</tbody>
</table>

This would force return traffic destined for the 10.250.100.0/24 network to be sent via the 10.224.94.252 gateway.

16.3.2. Configuring PBR (Policy Based Routing)

Using the WebUI menu option: **Cluster Configuration > PBR Default Gateways** the following gateway could be added to the load balancer:

<table>
<thead>
<tr>
<th>Select Floating IP</th>
<th>Gateway Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.224.94.18</td>
<td>10.224.94.252</td>
</tr>
</tbody>
</table>

This would ensure that all traffic with a source address of 10.224.94.18 is sent via the 10.224.94.252 gateway.

16.4. Generating a CSR on the Load Balancer

If you have an SSL certificate in either PFX or PEM file format, this can be uploaded to the Load balancer using the certificate upload option. Alternatively, you can create a Certificate Signing Request (CSR) on the load balancer and send this to your chosen CA to create a new certificate.

To generate a CSR:

1. Using the WebUI, navigate to: **Cluster Configuration > SSL Certificates**.

2. Click **Add a new SSL Certificate & select Create a New SSL Certificate (CSR)**.
3. Enter a suitable **Label** (name) for the certificate.

4. Populate the remaining fields according to your requirements.

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>file-cart</td>
</tr>
<tr>
<td>Domain (CN)</td>
<td>domain.com</td>
</tr>
<tr>
<td>Subject Alternate Name</td>
<td>domain.com</td>
</tr>
<tr>
<td>Organisation (O)</td>
<td>Company Name</td>
</tr>
<tr>
<td>Organisation unit (OU)</td>
<td>IT Department</td>
</tr>
<tr>
<td>City (L)</td>
<td>London</td>
</tr>
<tr>
<td>State or Province (ST)</td>
<td>Greater London</td>
</tr>
<tr>
<td>Country code (C)</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Email address</td>
<td>support@domain.com</td>
</tr>
<tr>
<td>CSR Key Length</td>
<td>2048 bits</td>
</tr>
</tbody>
</table>

5. Once all fields are complete click **Create**.

6. To view the CSR click **Modify** next to the new certificate, then expand the Certificate Signing Request (CSR) section.

7. Copy the CSR and send this to your chosen CA.

8. Once received, copy/paste your signed certificate into the **Your Certificate** section.

9. Intermediate and root certificates can be copied/pasted into the **Intermediate Certificate** and **Root Certificate** sections as required.

10. Click **Update** to complete the process.

The new certificate will now be displayed under **Cluster Configuration > SSL Certificates**.
17. Document Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Change</th>
<th>Reason for Change</th>
<th>Changed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>22 March 2024</td>
<td>Initial version</td>
<td></td>
<td>RJC</td>
</tr>
<tr>
<td>1.1</td>
<td>18 April 2024</td>
<td>Corrected network interface referencing on rear panel layout image</td>
<td></td>
<td>RJC</td>
</tr>
</tbody>
</table>
About Loadbalancer.org

Loadbalancer.org’s mission is to ensure that its clients’ businesses are never interrupted. The load balancer experts ask the right questions to get to the heart of what matters, bringing a depth of understanding to each deployment. Experience enables Loadbalancer.org engineers to design less complex, unbreakable solutions - and to provide exceptional personalized support.