1. Introduction

Amazon Web Services offers an extensive set of global cloud-based services. These services help organizations move faster, lower IT costs, and scale. It allows services to be deployed as and when required. Charges are made for what is used making it an extremely flexible and cost effective solution. Enterprise AWS allows customers to rapidly deploy and configure a load balancing solution within the Amazon cloud. The latest Loadbalancer.org AWS appliance enables both Layer 4 and layer 7 virtual services to be quickly and easily configured.

2. About Enterprise AWS

Enterprise AWS is a fully featured Application Delivery Controller (ADC) / Load Balancer designed specifically for AWS. The core software is based on customized versions of Centos 6.x/RHEL 6.x, Linux 4.9.x, LVS, HA-Linux, HAProxy, Pound, STunnel & Ldirectord. Enterprise AWS can be deployed as a single instance or as an HA clustered pair of instances for high availability and resilience. For details of adding a second (slave) instance, please refer to page 6 and 45. It’s also possible to deploy 2 instances in different AZs for high availability, this is achieved using a primary/secondary master model rather than the master/slave model, please refer to pages 7 and 48 for more details.

Enterprise AWS is based on our hardware/virtual product and has almost identical features. There are certain differences due to the way the Amazon EC2 environment works, these are listed below.

MAIN DIFFERENCES TO OUR STANDARD (NON-CLOUD) PRODUCT

- The network setup is customized for Amazon EC2 deployment
- Dual interface layer 4 NAT mode where each interface of the load balancer is connected to a different subnet and the default gateway of the real servers is configured to be the load balancer is not supported
 - Single interface mode should be used instead, and a default route with the target set as the load balancer instance should be added to the routing table of the subnet where the real servers are located – please refer to page 35 for an example
 - Also, for a clustered pair of load balancers (master & slave) the AWS routing table for the Real Server subnet must be dynamically changed when failover from the active to passive device occurs. This can be achieved using the WebUI option: Cluster Configuration > Heartbeat Advanced, and the AWS command `aws ec2 replace-route` as explained in the section starting on page 45
- Dual interface layer 7 SNAT mode with TProxy where each interface of the load balancer is connected to a different subnet and the default gateway of the real servers is configured to be the load balancer is not supported
 - Single interface mode should be used instead, and a default route with the target set as the load balancer instance should be added to the routing table of the subnet where the real servers are located – please refer to page 42 for an example
 - Also, for a clustered pair of load balancers (master & slave) the AWS routing table for the Real Server subnet must be dynamically changed when failover from the active to passive device occurs. This can be achieved using the WebUI option: Cluster Configuration > Heartbeat Advanced, and the AWS command `aws ec2 replace-route` as explained in the section starting on page 45
- The WebUI is not accessible on HTTP port 9080, only HTTPS port 9443
- Layer 4 DR mode is only supported for internal clients located in the same VPC as the load balancer. This can be useful for multi-tiered applications. Please refer to this blog for more
WHY USE ENTERPRISE AWS?

Amazon enables users to setup Elastic Load Balancing for load balancing other EC2 instances running in the cloud. This does provide basic load balancing functionality but is limited in several areas. Loadbalancer.org’s Enterprise AWS load balancer provides the following additional features & advantages:

1. Load balances virtually any TCP or UDP based protocol
2. Ability to deploy a clustered pair of instances for High Availability: one active, one passive
3. Load balances both EC2 based and non-EC2 based servers
4. Supports customizable timeouts for custom applications beyond those offered by AWS
5. Supports comprehensive back-end server health-check options
6. Enables fallback servers to be configured and invoked when all load balanced servers/services fail
7. Provides extensive real time and historical statistics reports
8. Supports session distribution based on actual server load (utilizing Loadbalancer.org’s feedback agent which is available for both Linux & Windows)
9. Supports source IP based persistence
10. Supports RDP Cookie based persistence
11. Supports full integration with Remote Desktop Services Connection Broker
12. Supports multiple load balanced services running on multiple IP addresses

Note:
For a full feature comparison please refer to our Enterprise AWS product page.

3. Accessing AWS

To start using AWS, you’ll need an Amazon account. If you don’t already have one you can create one at the following URL: https://aws.amazon.com/console/

4. Deployment Concepts

OVERVIEW
Instances must be deployed within a VPC (Virtual Private Cloud). The simplest way to create and configure a VPC is to use the wizard available in the AWS/VPC console.

AWS TOPOLOGY OPTIONS
There are several ways in which the load balancer can be deployed. The options available depend on whether you intend to deploy one or two (for HA) load balancer instances, and whether you are deploying to single or dual availability zones. The options are explained below.
SINGLE AVAILABILITY ZONE

Single Appliance
A single instance is deployed.

- If the load balancer instance fails for any reason, load balanced services will no longer be available.

2 Appliances in Active/Passive mode
Here, two load balancer instances are deployed as a clustered pair. This is Loadbalancer.org's traditional HA mode where one appliance is the master and the second is the slave.

- Under normal conditions the master is active and the slave is passive. If the master fails, the load
Deployment Concepts

balanced services (VIPs) will be automatically brought up on the slave. When failover occurs, the EIP is still associated with the same private IP address, but it's now active on the slave

- For a correctly configured pair, changes made to load balanced services on the master will be automatically replicated to the slave
- Both master and slave appliances must be deployed in the same subnet/Availability Zone to allow VIPs to be brought up on either appliance
- Please refer to page 45 for detailed steps on configuring this mode

DUAL AVAILABILITY ZONES

2 Instances in AZ HA Mode
This mode enables two load balancer instances to be configured in different subnets/Availability Zones. In this mode, for each load balanced service, a VIP is configured on each instance and both are always locally active, but only one is made available via the associated EIP. Regular checks ensure that the EIP is up, and if not, the EIP is automatically associated with the other instance thereby ensuring availability.

There are several options regarding placement of the load balanced servers (RIPs), the example below shows one possible scenario.

- In this mode, VIPs are configured independently on both load balancer instances using a private address in the respective subnet
- Both VIP1 on LB1 and VIP2 on LB2 are locally active, but the EIP is only associated with one of the instances, in the example above the EIP is normally associated with LB1
- LB2 regularly checks that the EIP is up via LB1, and if not, the EIP is associated with LB2 after the check timeout has been reached
- The WebUI can be used to force VIP2 on LB2 to be associated with the EIP rather than VIP1 on LB1
- In the above example, should AZ-1 fail, then LB1, Svr1 & Svr2 will also go down. This will trigger LB2 to associate the EIP with VIP2/Svr3, and services will continue to be available
- Please refer to page 48 for detailed steps on configuring this mode
CREATING A VPC

The simplest way to create a VPC in AWS is to use the wizard. When using the wizard there are 4 types that can be selected as detailed in the table below:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Creates</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPC with a Single Public Subnet</td>
<td>Instances run in a private, isolated section of the AWS cloud with direct access to the Internet. Network access control lists and security groups can be used to provide strict control over inbound and outbound network traffic to your instances. A /16 network with a /24 subnet. Public subnet instances use Elastic IPs or Public IPs to access the Internet.</td>
<td></td>
</tr>
<tr>
<td>VPC with Public and Private Subnets</td>
<td>In addition to containing a public subnet, this configuration adds a private subnet whose instances are not addressable from the Internet. Instances in the private subnet can establish outbound connections to the Internet via the public subnet using Network Address Translation (NAT). A /16 network with two /24 subnets. Public subnet instances use Elastic IPs to access the Internet. Private subnet instances access the Internet via a Network Address Translation (NAT) instance in the public subnet. (Hourly charges for NAT instances apply.)</td>
<td></td>
</tr>
<tr>
<td>VPC with Public and Private Subnets and Hardware VPN Access</td>
<td>This configuration adds an IPSec Virtual Private Network (VPN) connection between your Amazon VPC and your data center – effectively extending your data center to the cloud while also providing direct access to the Internet for public subnet instances in your Amazon VPC. A /16 network with two /24 subnets. One subnet is directly connected to the Internet while the other subnet is connected to your corporate network via IPSec VPN tunnel. (VPN charges apply.)</td>
<td></td>
</tr>
<tr>
<td>VPC with a Private Subnet Only and Hardware VPN Access</td>
<td>Your instances run in a private, isolated section of the AWS cloud with a private subnet whose instances are not addressable from the Internet. You can connect this private subnet to your corporate data center via an IPSec Virtual Private Network (VPN) tunnel. A /16 network with a /24 subnet and provisions an IPSec VPN tunnel between your Amazon VPC and your corporate network. (VPN charges apply.)</td>
<td></td>
</tr>
</tbody>
</table>

Note:
For more information about VPCs please click [here](#).

VPC IP ADDRESS TYPES
There are 3 IP address types as detailed below:

Private
The internal RFC 1918 address of an instance that is only routable within the EC2 Cloud. Network traffic originating outside the EC2 network cannot route to this IP, and must use the Public IP or Elastic IP Address mapped to the instance.

Public
Internet routable IP address assigned by the system for all instances. Traffic routed to the Public IP is translated via 1:1 Network Address Translation (NAT) and forwarded to the Private IP address of an instance. The mapping of a Public IP to Private IP of an instance is the default launch configuration for all instance types. Public IP Addresses are released when instances are stopped or terminated. When an instance is
powered on again or restarted, it is allocated a different public IP address. If you require a persistent public IP address that can be associated to and from instances as you require, use an Elastic IP address instead.

Elastic (EIP)

Internet routable IP address allocated to an AWS EC2 account. Similar to EC2 Public Address, 1:1 NAT is used to map Elastic IP Addresses with their associated Private IP addresses. Unlike a standard EC2 Public IP Address, Elastic IP Addresses are allocated to accounts and can be remapped to other instances when desired.

Note:

Virtual Services (VIPs) can be created on the same IP address as the load balancer’s network interface (ENI). However, if configured in this way, it won’t be possible to add a slave unit to create a HA clustered pair.

AWS INTEGRATION

Enterprise AWS has been designed to leverage the AWS API to automatically complete tasks in AWS that would otherwise need to be done manually.

To achieve this, each instance must have access to the API. This can be provided by defining a VPC Endpoint to enable connectivity from the subnet where the instance is located. Configuring an Endpoint is covered in the appendix on page 60.

API calls are used to provide automatic integration in the following areas.

SECONdARY IP ADDRESSES

When VIPs are added that are not bound to the primary IP address of the instance, additional secondary private IP addresses must be added. These IP’s must be added using the appliance’s WebUI and also via the AWS portal to ensure that AWS is also aware of the new allocation.

If the appliance has access to the AWS API Endpoint when the VIP is created, secondary IP addresses are automatically assigned to the instance’s primary network interface when VIPs are created using the appliance WebUI. This is achieved thought AWS API calls.

If the appliance does not have access to the AWS API when the VIP is created, the IP address must also be manually assigned to the network interface using the AWS EC2 dashboard.

ELASTIC IP ADDRESSES

The same concept applies to EIPs. The relates to allocating and deleting EIPs and also association and disassociation.

AUTOSCALING

Enterprise AWS support integration with AWS Autoscaling. When configured, the load balancer will use AWS API calls to monitor the specified autoscaling group for any changes in servers. If a server is added or removed from the autoscaling group, the same will be automatically applied to the Virtual Service.

Layer 7 VIPs also support the ability to set the port used to connect to the backend server. This is set when the autoscaling service adds a new server. If empty this will default to the frontend listen port.

For details on how to enable Autoscaling for a particular VIP, please refer to page page 58 in the appendix.

IP ADDRESS ALLOCATION OPTIONS & REQUIREMENTS

Depending on the deployment scenario, there are certain requirements & constraints that apply.
INTERNAL (PRIVATE NETWORK) DEPLOYMENTS

In this scenario Virtual Services (VIPs) can be configured in the following ways:

- **For a Single Appliance**
 1. Using the primary private IP address of the instance
 2. Using additional secondary private IP(s)

 AND

 Configuring a VPC Endpoint to enable access from the subnet where the instance is located, to the Amazon API for your particular region, e.g. for US-east, the AWS Service Endpoint to access the API is https://ec2.us-east-1.amazonaws.com. When the Endpoint is configured, make sure that the associated Security Group allows inbound access on port 443.

 Note:
 - If the Endpoint is not configured:
 - There will be no access to the AWS API. In this case, the secondary IP address(es) will need to be added via the appliance WebUI and manually via the AWS portal.

- **For a Clustered Pair (Master & Slave)**
 1. Using additional secondary private IP(s) - this ensures that the VIP is able to ‘float’ between the master & slave instance

 AND

 Configuring a VPC Endpoint to enable access from the subnet where the instances are located, to the Amazon API for your particular region, e.g. for US-east, the AWS Service Endpoint to access the API is https://ec2.us-east-1.amazonaws.com. When the Endpoint is configured, make sure that the associated Security Group allows inbound access on port 443.

 Note:
 - Access to the AWS API MUST be provided for this method to be configured and to operate correctly. If there is no access, it will not be possible to move the floating IP address for the VIP from one instance to the other.

PUBLIC FACING DEPLOYMENTS

In this scenario Virtual Services (VIPs) can be configured in the following ways:

- **For a Single Appliance**
 1. Using the primary private IP address of the instance and associating an EIP
 2. Using additional secondary private IP(s) and associating EIP(s)

 AND

 Configuring a VPC Endpoint to enable access from the subnet where the instance is located, to the Amazon API for your particular region, e.g. for US-east, the AWS Service Endpoint to access the API is https://ec2.us-east-1.amazonaws.com. When the Endpoint is configured, make sure that the associated Security Group allows inbound access on port 443.
Deployment Concepts

Note:
If the Endpoint is not configured:

- There will be no access to the AWS API. In this case, the secondary IP address(es) will need to be added via the appliance WebUI and manually via the AWS portal.
- EIP allocation & association must be configured via the AWS portal.

- For a Clustered Pair (Master & Slave)
 1. Using additional secondary private IP(s) and associating EIP(s)

 AND
 Configuring a VPC Endpoint to enable access from the subnet where the instances are located, to the Amazon API for your particular region, e.g. for **US-east**, the AWS Service Endpoint to access the API is https://ec2.us-east-1.amazonaws.com. When the Endpoint is configured, make sure that the associated Security Group allows inbound access on port 443.

Note:
Access to the AWS API **MUST** be provided for this method to be configured and to operate correctly. If there is no access, it will not be possible to move the floating IP address for the VIP from one appliance to the other or re-associate the EIP.

- For Dual AZ (Primary & Secondary Master)
 1. Using additional secondary private IP(s) and associating EIP(s)

 AND
 Assigning a standard, dynamic public IP address to each instance when deployed, this ensures that each appliance is able to access the internet to perform the EIP health check of the peer appliance, more information on the options available to provide instance Internet access is available [here](https://example.com).

 AND
 Configuring a VPC Endpoint to enable access from the subnets where the instances are located, to the Amazon API for your particular region, e.g. for **US-east** the AWS Service Endpoint to access the API is https://ec2.us-east-1.amazonaws.com. When the Endpoint is configured, make sure that the associated Security Group allows inbound access on port 443.

Note:
Access to the AWS API **MUST** be provided for this method to be configured and to operate correctly. If there is no access, it will not be possible to re-associate the EIP.

VPC NETWORK INTERFACES (ENI)

By default, a single ENI (Elastic Network Interface) is allocated when an instance is launched. A private IP address within the IP address range of its VPC is auto assigned to the ENI. Multiple private IP addresses can be assigned to each ENI, the limit is determined by instance type as defined [here](https://example.com).

10GB SUPPORT

For the load balancer to support 10GB, SR-IOV (single root I/O virtualization) must be enabled. This can be done with one of following commands. The instance needs to be stopped to run the command. When using instances with enhanced networking they should be located in the same placement group.
Deployment Concepts

modify-instance-attribute (AWS CLI)

$ aws ec2 modify-instance-attribute --instance-id instance_id --sriov-net-support simple

ec2-modify-instance-attribute (Amazon EC2 CLI)

$ ec2-modify-instance-attribute instance_id --sriov simple

These commands can be run from any machine that has the AWS or ec2 tools installed and security access configured. Once enabled the load balancer supports 6.5GB/s at layer 7 and 9GB/s at layer 4.

INSTANCE TYPE

When deploying a new instance, the default type is t3.medium. This can be changed as required. A comparison of the various types is available [here](#).

5. Deploying Enterprise AWS

CREATE & CONFIGURE A VPC

For a manually created VPC, the key steps are:

1. **Create a VPC** – this is an isolated portion of the AWS cloud
2. **Create and attach an Internet gateway** – this connects the VPC directly to the Internet and provides access to other AWS products
3. **Create an Amazon VPC subnet** – this is a segment of a VPC’s IP address range where you can launch Amazon EC2 instances
4. **Set up routing** in the VPC – this enables traffic to flow between the subnet and the Internet
5. **Set Up a Security Group** for the VPC – this controls inbound and outbound traffic

However, as mentioned previously the easiest way to configure a VPC is by using the VPC Wizard. The wizard covers steps 1-4.

To create a VPC using the wizard:

1. In the VPC dashboard, click **Launch VPC Wizard**
2. Select the first option – **VPC with a Single Public Subnet**

Note:
This wizard option is appropriate in many cases. It creates a VPC with a single public subnet and auto configures the gateway, subnets and routing table. Additional subnets can easily be added later if required.

3. Enter a VPC name and modify the other settings as required as show in the example below:

4. Click **Create VPC**

Note:
For more information about VPCs please click [here](#).
ACCESSING & DEPLOYING THE AMI

To access and deploy the AMI:

1. In the EC2 Dashboard, click **Launch Instance**
2. Select **AWS Marketplace**
3. Search for “Loadbalancer.org”
4. Click **Select** next to the required AMI, either:
 - **Advanced Load Balancer ADC – 10G** (Fully featured appliance licensed for 20Gbps throughput)
 - **Advanced Load Balancer ADC – 1G** (Fully featured appliance licensed for 4Gbps throughput)
 - **Advanced Load Balancer ADC – BYOL** (Fully featured appliance, one time payment (AWS infrastructure costs still apply), purchase and apply either the 1G or the 10G license)

 Note:
 The BYOL version will work completely unrestricted for 30 days without any license applied. During this period, only AWS usage charges will apply. After the 30 days, the trial will still function, but no configuration changes will be possible until the license is applied.

5. Review pricing details and if happy to proceed click **Continue**
6. Select the required instance type – **t3.medium** is the default

Step 2: Choose an Instance Type

Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instance needs:

<table>
<thead>
<tr>
<th>Filter by: All instance families</th>
<th>Current generation</th>
<th>Show/Hide Columns</th>
</tr>
</thead>
</table>

Currently selected: t3.medium (1 vCPU, 1 GB memory, 2.5 GHz CPU, 8 GB memory, EBS only)

Note: The vendor recommends using a **t3.medium** instance (or larger) for the best experience with load balancers.

<table>
<thead>
<tr>
<th>Family</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>t2</td>
<td>t2.nano</td>
</tr>
<tr>
<td>• t2</td>
<td>t2.micro</td>
</tr>
<tr>
<td>• t2</td>
<td>t2.small</td>
</tr>
<tr>
<td>• t2</td>
<td>t2.medium</td>
</tr>
<tr>
<td>• t2</td>
<td>t2.large</td>
</tr>
<tr>
<td>• t2</td>
<td>t2.xlarge</td>
</tr>
<tr>
<td>• t2</td>
<td>t2.2xlarge</td>
</tr>
<tr>
<td>• t3</td>
<td>t3.nano</td>
</tr>
<tr>
<td>• t3</td>
<td>t3.micro</td>
</tr>
<tr>
<td>• t3</td>
<td>t3.small</td>
</tr>
<tr>
<td>• t3</td>
<td>t3.medium</td>
</tr>
</tbody>
</table>
7. Click **Next: Configure Instance Details**

![Step 3: Configure Instance Details](image)

- **Number of instances**: 1
- **Purchasing option**: Request Spot instances
- **Network**: vpc-0550cde85b756423b32 | VPC-100
- **Subnet**: subnet-0761044b81691a32b4c2 | Public subnet | us-east-2
- **Auto-assign Public IP**: None, 251 IP Addresses available
- **Placement group**: None
- **Capacity Reservation**: None
- **Domain join directory**: None
- **IAM role**: demo-ib
- **CPU options**: None
- **Shutdown behavior**: Stop

8. Change **Network** to the required VPC

 - If the VPC was created with the wizard, the public subnet’s auto-assign Public IP option will be disabled. To automatically allocate a public IP address, change **Auto-assign Public IP** to “Enable”

9. Select a suitable **IAM Role**. The role can simply have “**Amazon EC2 Full Access**” for the “**Amazon EC2**” AWS Service Role or for more granular configuration please refer to page 56 in the appendix

 Note:

 Configuring an **IAM role** for the instance is optional. However, we always recommend that one is assigned. This allows the instance to make AWS API calls to automatically configure the required AWS settings. If not set, these AWS settings would need to be manually configured. For more details please refer to section 1 in the Appendix on page 56.

10. Configure the remaining options according to your requirements

 - **Network Interfaces** – typically there is no need to add additional interfaces. Load balancing real servers in different subnets is configured by changing AWS routing rules. The routing rules required depend on where the real servers and located (same or different subnet as the load balancer) and the load balancing mode selected. Please refer to the configuration examples 4 & 7 on pages 35 and 42 respectively for more details.
 - **Advanced Details** – Configure according to your requirements.

11. Click **Next: Add Storage**
12. Set the required options – the defaults are appropriate in most cases, click **Next: Add Tag**

13. Define the required tags for the instance. For example, to define a tag with key = *Name* and value = *LB1*, click **Add Tag** and enter the values as shown below:

14. Click **Next: Configure Security Group**
• At least the default rules shown above and listed below must be configured. These are required to enable management & monitoring access to the load balancer.
 ◦ Management (SSH) – TCP port 22
 ◦ Management (WebUI) – TCP port 9443
 ◦ Heartbeat between master and slave appliances – UDP port 6694
 ◦ Monitoring (HAProxy Statistics Page) – TCP port 7777

Note:
By default, rules with source of 0.0.0.0/0 allow all IP addresses access to the instance, these should be locked down to allow access only from known / trusted IPs.

• Additional rules must be added to provide access to the application(s) being load balanced. These should also be locked down to know IPs / IP ranges where possible.
 ◦ For example, if you’re load balancing HTTP & HTTPS traffic, add TCP ports 80 & 443
 ◦ If you’re load balancing RDP traffic, add TCP port 3389
 ◦ If you’re load balancing SIP traffic, add TCP/UDP ports 5060/5061 (the exact ports required for SIP depend on the specific VoIP system being load balanced)
 ◦ etc.

15. Click **Review and Launch**
16. Check all settings and click **Launch**
17. If creating a new pair use the **Download Key Pair** button to save the private key.

Note:

This private key is used for secure access to the load balancer instance via SSH once it's up and running.

18. If using an existing key pair, check (tick) the acknowledgment check-box.

19. Click the **Launch Instances** button, the instance will now launch.

20. If you're deploying layer 4 NAT mode services or Layer 7 with TProxy enabled, you'll need to disable the **Source/Destination Check** for the instance. This is because the instance must be able to send and receive traffic when the source or destination is not itself.

 This can be done by right-clicking the instance and selecting: **Networking > Change Source/Dest. Check** and ensuring it's disabled (**Stop** should checked) as shown below:

 ![Source/Destination Check Configuration](image-url)
CHECKING YOUR SUBSCRIPTIONS

Current subscriptions can be managed using the *Your Marketplace Software* option in the [aws marketplace](https://aws.amazon.com/marketplace) console as shown below:

6. Accessing the Appliance

USING THE WEBUI

In a browser, navigate to the Public DNS name or Public IP address on port 9443, i.e.

https://<Public DNS name>:9443

or

https://<Public IP address>:9443

You'll receive a warning about the certificate as it's a self signed cert not related to an Internet based CA. Confirm you want to continue and a login prompt will be displayed. Use the following default credentials:

- **Username:** loadbalancer
- **Password:** <EC2 Instance-ID>

Note:

To change the password for the 'loadbalancer' account, use the WebUI option: *Maintenance > Passwords.*
Once logged in, the WebUI is displayed:

WEBUI MENU OPTIONS

The main menu options are as follows:

- **System Overview** – Displays a graphical summary of all VIPs, RIPS and key appliance statistics
- **Local Configuration** – Configure local host settings such as DNS, Date & Time etc.
- **Cluster Configuration** – configure load balanced services such as VIPs & RIPS
- **EC2 Configuration** – Configure Elastic IP to local IP associations & dual AZ HA settings
- **Maintenance** – Perform maintenance tasks such as service restarts and taking backups
- **View Configuration** – Display the saved appliance configuration settings
- **Reports** – View various appliance reports & graphs
Accessing the Appliance

Logs – View various appliance logs
Support – Create a support download & contact the support team

APPLIANCE SECURITY
To control how the appliance is accessed and which features are enabled, 3 security modes are provided:

- **Secure** – this is the default mode. In this mode:
 - the WebUI is accessible on HTTPS port 9443. If you attempt to access the WebUI on HTTP port 9080 you will be redirected to HTTPS port 9443
 - access to the “Execute Shell Command” menu option is disabled
 - the ability to edit the firewall script & the lockdown wizard is disabled
 - ’root’ user console & SSH password access are disabled

- **Custom** – In this mode, the security options can be configured to suit your requirements

- **Secure – Permanent** – this mode is the same as Secure, but the change is irreversible

IMPORTANT:
Only set the security mode to **Secure – Permanent** if you are 100% sure this is what you want!

To configure the Security Mode:

1. Using the WebUI, navigate to: Local Configuration > Security
2. Select the required Appliance Security Mode
3. If Custom is selected, configure the other options to suit your requirements
4. Click Update

Note:
For full details of all options, please refer to the Administration Manual and search for “Appliance Security Options”.

CHECKING FOR UPDATES
Once you have access to the WebUI, we recommend that you use the online update feature to ensure that you’re running the very latest version of the appliance. To check for updates, use the WebUI option: Maintenance > Software Update and click the Online Update button. If updates are available, you’ll be presented with a list of changes that are included in the update. To start the update, click the second Online Update button at the bottom of the screen. Updates are incremental, so repeat the process until you’re informed that no more updates are available.

APPLIANCE LICENSING
If you’ve deployed the BYOL version of the appliance, by default it runs as a 30 day trial and is completely unrestricted during this time. After 30 days, the appliance continues to work but it’s no longer possible to make changes to the configuration. When a license is purchased, you’ll be provided with a license key file by our sales team. This must then be installed on your appliance. To install the license, use the WebUI option: Local Configuration > License Key to browse to and select the license file provided. Once selected, click Install License Key to apply the license. We recommend that you should check for updates before applying the license key.
ENTERPRISE AWS NON-STANDARD WEBUI MENU OPTIONS
Enterprise AWS has a number of differences to the standard hardware/virtual product range due to the way the Amazon EC2 environment works.

The menu options that are different are detailed below. For all others please refer to our Administration Manual.

1) Local Configuration > Network Interface Configuration

![Network Interface Configuration](Image)

Notes:
- Shows the private IP addresses allocated to the instance
- The first address in the list is auto-allocated when launched

Note:
It’s not possible to change the auto-allocated IP address.

- Multiple IP addresses can be assigned as shown
- Additional IP addresses added here after the first one in the list are shown as “Secondary Private IPs” in the AWS/EC2 Dashboard
- Click **Configure Interfaces** to apply any changes
2) Cluster Configuration > Heartbeat Advanced

Heartbeat Failover Script

```plaintext
# Heartbeat Failover Commands
# Here you can enter commands that run when Heartbeat fails over.
# These commands are not replicated across appliances.
```

Notes:
- Enables commands to be run at failover from master to slave appliance if configured. This includes Amazon CLI tools commands. For more information of the various CLI commands available please click [here](#).
- Please refer to page 45 for more details on configuring 2 appliances in a master/slave HA configuration.

3) EC2 Configuration > EC2 Network Configuration

Associated Elastic IP’s

<table>
<thead>
<tr>
<th>Elastic IP</th>
<th>Private IP</th>
<th>Use with AZ HA</th>
<th>[Disassociate]</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.211.158.247</td>
<td>10.0.0.160</td>
<td>✔️</td>
<td></td>
</tr>
</tbody>
</table>

Available Elastic IP’s

<table>
<thead>
<tr>
<th>Elastic IP</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>52.209.141.104</td>
<td>eipalloc-6de42109</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- This menu option is used to define how Elastic IPs relate to private IPs.
- Row-1 above shows that EIP 52.211.158.247 is associated with private IP 10.0.0.160. If you want to undo the association click [Disassociate].
- Row-2 above shows that EIP 52.209.141.104 is currently not associated with any Private IPs, it can be deleted by clicking [Delete].
- New EIPs can be allocated by clicking Allocate New Elastic IP. Newly created EIPs will be displayed in the Available Elastic IPs list. New addresses will also be displayed in the AWS console. Similarly, if new EIPs are created in the AWS console, they will be displayed here.
• Please refer to page 48 for more details on configuring dual AZ HA mode

4) EC2 Configuration > EC2 Zone HA Configuration
This menu option is used to configure Zone HA, where 2 master instances are deployed, each in a different AZ in a primary/secondary configuration. Please refer to page 48 for more details on configuring dual AZ HA mode

Synchronization Tab

![Synchronization Tab](image)

Notes:
• This is used to configure a primary/secondary pair. The IP address if the secondary instance and the password for the loadbalancer user must be entered, then when Add new node is clicked, new keys and signed certificates will be generated and synchronized with the node specified. These keys are used to verify the peer when monitoring an Elastic IP across Availability Zones.
• Please refer to page 48 for more details on configuring dual AZ HA mode

Security Tab

![Security Tab](image)

Notes:
• This is used to verify that the various keys & certificates have been generated and also allows them to be deleted
• If deleted, the keys & certificates will need to be re-generated using the Synchronization Tab as described above
• Please refer to page 48 for more details on configuring dual AZ HA mode

Configuration Tab

<table>
<thead>
<tr>
<th>Synchronisation</th>
<th>Security</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

• **Port** – This is the port the service will listen on and connect to on the peer. The appliances in each Availability Zone should use the same port
• **Check Interval** – This is the interval between health checks. It also sets the timeout value for when a health check is considered failed
• **Failure Count** – This sets the desired number of health check failures before moving the Elastic IP address. The recommended value is 3 as this helps rule out temporary issues
• **Max Association Retry** – This sets the desired number times to retry associating the elastic IP with the private IP address before giving up. Each association after the 200th association costs $0.10.

5) **EC2 Configuration > EC2 Zone HA Status**
This menu option is used to display the Zone HA status.

The primary master instance:

AZ HA Status

<table>
<thead>
<tr>
<th>Elastic IP</th>
<th>Private IP</th>
<th>Status</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.211.158.247</td>
<td>10.0.0.160</td>
<td>Local</td>
<td></td>
</tr>
</tbody>
</table>

The secondary master instance:
ACCESSING THE APPLIANCE USING SSH

To access the appliance using SSH, the private key from the key pair that was selected when the instance was launched must be used. Under Linux, the key can be used immediately, for PuTTY under Windows, the key must first be converted to a format required by PuTTY as detailed below.

Note:
For SSH access make sure that TCP port 22 is included in the security group for the load balancer.

USING LINUX
First change the permission of the private key file to allow only the owner read access:

```bash
# chmod 400 /path-where-saved/private-key-file.pem
```

Now start SSH specifying the private key file, login as `lbuser`

e.g.

Using the IP address:

```bash
# ssh -i /path-where-saved/private-key-file.pem lbuser@1.2.3.4
```

Or using the fqdn:

```bash
# ssh -i /path-where-saved/private-key-file.pem lbuser@fqdn
```

USING WINDOWS

Note:
If you create the keypair before deploying the load balancer instance using the Network & Security > Key Pair option in the EC2 console, the output file format to be set to ppk. In this case Puttygen is not needed.

For PuTTY, the private key must be converted into an appropriate format. To do this the PuTTYgen utility (included with PuTTY) must be used. Start PuTTYgen:
Click **Load**, change the file-type to all files and select the pem file saved earlier when creating your Key Pair.

You should see the following message:

Click **OK**
Now Click **Save private key** – this can then be used with PuTTY.

You can also choose to enter an additional pass-phrase for improved security, if you don't, the following message will be displayed:

Click **Yes** and save the file with the default .ppk extension

Now close PuTTYgen and start PuTTY

Expand the SSH section as shown below:
Click **Browse** and select the new .ppk file just created.

When you open the SSH session, login as ‘**lbuser**’ – no password will be required.

7. Configuration Examples

The following sections provide a number of examples to help illustrate how the load balancer can be deployed. In many cases, either example 1 or example 2 can be used. Both of these examples use a single subnet for the load balancer and the load balanced back-end (real) servers. The simplest is example 1 which uses a layer 7 configuration and requires no changes to the back-end servers. Example 2 uses a layer 4 configuration and requires the default gateway of the back-end servers to be the load balancer.

It’s important to consider that when configured at layer 7, the load balancer is not transparent which means that the source IP address of packets reaching the real servers will be the load balancer’s own IP address. At layer 4, the load balancer is transparent which means that the source IP address of packets reaching the real servers is the client IP address.

Examples 3 – 7 illustrate how the load balancer can be configured to support other scenarios, e.g. when the real servers are located in a different subnet.

DEPLOYMENT NOTES

IP Addresses

Various conditions must be met depending on the deployment type, please refer to the section [IP address Allocation Options & Requirements](#) for more details.
Availability Zones

Load balanced real servers can be located in any availability zone within the region. For servers that are located in a different zone to the load balancer, simply ensure that the routing of the associated subnet is modified to include a default route (0.0.0.0/0) who's target is set to be the ENI on the load balancer. This is exactly the same approach for servers that are located in different subnets within the same zone. Please refer to configuration examples 4 & 6 on pages 35 and 40 respectively for details on setting this up.

It’s also possible to place one load balancer instance in AZ-1 and a second instance in AZ-2, then create a Primary/Secondary HA pair. Please refer to pages 7 and 48 for more information.

Routing Table Target Configuration

To be able to set the load balancer’s ENI as a route target, make sure that the **Source/Destination Check** is disabled for the load balancer instance. If this is not disabled, the load balancer’s ENI will not be displayed as an option in the target list.

Real Server Internet access via the Load Balancer Instance

If your real servers are located in private subnets behind the load balancer and need Internet access for software installation, updates etc., this can be achieved by enabling **autonat** on the load balancer.

To enable autonat:

1. Using the WebUI, navigate to: *Cluster Configuration > Layer 4 – Advanced Configuration > Auto-NAT*
2. Set *Auto-NAT* to **eth0**, i.e. the load balancer’s ENI

![Auto-NAT eth0](image)

1 – WEB SERVERS – 1 SUBNET, 1 LOAD BALANCER NETWORK INTERFACE, LAYER7

This is a simple layer 7 example using one subnet for both the load balancer and the web servers. The load balancer has a single network interface.

a) Setting up AWS

1. Deploy the load balancer instance as described starting on page 12
2. Deploy your required web server instances into the same VPC & subnet as the load balancer

b) Setting up the Virtual Service

1. Using the WebUI, navigate to: *Cluster Configuration > Layer 7 – Virtual Service* and click **Add a New Virtual Service**
2. Enter the following details:
3. Enter an appropriate label for the VIP, e.g. **Web-Cluster1**
4. Set the *Virtual Service IP address* field to the required IP address, e.g. **10.0.0.22**
5. Set the *Virtual Service Ports* field to the required port, e.g. **80**
6. Leave *Layer 7 Protocol* set to **HTTP Mode**
7. Click **Update**

c) Setting up the Real Servers

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created VIP
2. Enter the following details:

 ![Virtual Service](image)

 - **Label**: Web1
 - **Real Server IP Address**: 10.0.0.23
 - **Real Server Port**: 80
 - **Weight**: 100
 - **Re-Encrypt to Backend**: unchecked

 ![Real Server](image)

3. Enter an appropriate label for the RIP, e.g. **Web1**
4. Set the *Real Server IP Address* field to the required IP address, e.g. **10.0.0.23**
5. Set the *Real Server Port* field to the required port, e.g. **80**
6. Click **Update**
7. Repeat the above steps to add your other web server(s)

d) Applying the new Layer 7 Settings

1. Once the configuration is complete, use the **Reload HaProxy** button at the top of the screen to apply the changes
e) Associating the VIP with an Elastic IP Address (If access from the Internet is required)

1. Using the WebUI, navigate to: EC2 Configuration > EC2 Network Configuration

2. Under the Associated Elastic IP’s section click [Associate] next to the VIPs private IP address (10.0.0.22 in this case), if no Elastic IP’s are available, use the Allocate New Elastic IP button to add one.

2 – WEB SERVERS – 2 SUBNETS, 2 LOAD BALANCER NETWORK INTERFACES, LAYER7

This example uses 2 subnets – the load balancer is configured with 2 interfaces – 1 interface in subnet 1 and the other in subnet 2. The real servers are connected to subnet 2.

a) Setting up AWS

1. Deploy the load balancer instance as described starting on page 12
2. Add a second subnet to your VPC, skip this step if you already have one
3. Add a second Network Interface, associate it with the second subnet and attach it to the load balancer instance
4. Deploy your required web server instances into the second subnet

b) Configuring the second Network Interface

1. Using the WebUI, navigate to: Local Configuration > Network Interface Configuration, assign an IP address for the second interface (eth1), e.g. 10.0.2.220/24
2. Click **Configure Interfaces**

c) Setting up the Virtual Service

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Virtual Service** and click **Add a New Virtual Service**
2. Enter the following details:

![Virtual Service Configuration](image)

3. Enter an appropriate label for the VIP, e.g. **Web-Cluster1**
4. Set the **Virtual Service IP address** field to the required IP address, e.g. **10.0.0.22**
5. Set the **Virtual Service Ports** field to the required port, e.g. **80**
6. Leave **Layer 7 Protocol** set to **HTTP Mode**
7. Click **Update**

d) Setting up the Real Servers

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created VIP
2. Enter the following details:

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>Web1</td>
<td></td>
</tr>
<tr>
<td>Real Server IP Address</td>
<td>10.0.2.50</td>
<td></td>
</tr>
<tr>
<td>Real Server Port</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Re-Encrypt to Backend</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

3. Enter an appropriate label for the RIP, e.g. **Web1**
4. Change the **Real Server IP Address** field to the required IP address, e.g. **10.0.2.50**
5. Set the **Real Server Port** field to the required port, e.g. **80**
6. Click **Update**
7. Repeat the above steps to add your other web server(s)

e) Applying the new Layer 7 Settings

1. Once the configuration is complete, use the **Reload HAProxy** button at the top of the screen to apply the changes

f) Associating the VIP with an Elastic IP Address (If access from the Internet is required)

1. Using the WebUI, navigate to: **EC2 Configuration > EC2 Network Configuration**

2. Under the Associated Elastic IP's section click [Associate] next to the VIP's private IP address (10.0.0.22 in this case), if no Elastic IP's are available, use the **Allocate New Elastic IP** button to add one
Note:
Dual interface layer 7 SNAT mode with TProxy enabled (for transparency) where each interface of the load balancer is connected to a different subnet and the default gateway of the real servers is configured to be the load balancer is not supported. Please refer to example 4 on page 35 instead if you require layer 7 with transparency.

3 – WEB SERVERS – 2 SUBNETS, 1 LOAD BALANCER NETWORK INTERFACE, LAYER7, TRANSPARENT

This example uses 2 subnets – one subnet for the load balancer and one subnet for the web servers. The load balancer has a single network interface located in the first subnet. Layer 7 transparency is enabled to ensure that the source IP address of packets reaching the web servers is the source IP of the clients and not the IP address of the load balancer. Routing rules for the second subnet must also be changed.

a) Setting up AWS

1. Deploy the load balancer instance as described starting on page 12
2. Disable the Source/Destination Check for the load balancer instance. This is required to ensure that the load balancer is available as a target when configuring routing (see step 5 below). This is done by right-clicking the instance and selecting: Networking > Change Source/Dest. Check and ensuring it’s disabled.
3. Add a second subnet to your VPC, skip this step if you already have one
4. Deploy your required web server instances into the second subnet
5. Add a default route to the second subnets routing table (the subnet where the web servers are located), set the target to be the interface on the load balance

- Under the VPC dashboard, select Route Tables
- Select the route table that relates to the second subnet
- Select the Routes tab, and click Edit routes
- Click Add route
- In the blank row at the bottom set the destination to 0.0.0.0/0 and set the target to be the ENI on the load balancer – in this example “i-06e68cbf73e850255 LB1” as shown below

IMPORTANT:
Make sure you have disabled the Source/Destination Check for the Load Balancer instance, otherwise the load balancer will NOT be displayed as an option.
b) Setting up the Virtual Service

1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Virtual Service and click Add a New Virtual Service
2. Enter the following details:

 ![Virtual Service Configuration](image)

 - Enter an appropriate label for the VIP, e.g. **Web-Cluster1**
 - Set the Virtual Service IP address field to the required IP address, e.g. **10.0.0.22**
 - Set the Virtual Service Ports field to the required IP address, e.g. **80**
 - Leave Layer 7 Protocol set to **HTTP Mode**
 - Click **Update**
 - Now click **Modify** next to the newly created VIP
 - Scroll down to the Other section and click **[Advanced]**
 - Enable (check) **Transparent Proxy**
 - Click **Update**

c) Setting up the Real Servers

1. Using the WebUI, navigate to: Cluster Configuration > Layer 7 – Real Servers and click Add a new Real Server next to the newly created VIP
2. Enter the following details:

 ![Real Server Configuration](image)
3. Enter an appropriate label for the RIP, e.g. Web1
4. Change the Real Server IP Address field to the required IP address, e.g. 10.0.2.50
5. Set the Real Server Port field to the required port, e.g. 80
6. Click Update
7. Repeat the above steps to add your other web server(s)

d) Applying the new Layer 7 Settings

1. Once the configuration is complete, use the Reload HAProxy button at the top of the screen to apply the changes

e) Associating the VIP with an Elastic IP Address (If access from the Internet is required)

1. Using the WebUI, navigate to: EC2 Configuration > EC2 Network Configuration

 ![EC2 Network Configuration](image)

 2. Under the Associated Elastic IP's section click [Associate] next to the VIPs private IP address (10.0.0.22 in this case), if no Elastic IP's are available, use the Allocate New Elastic IP button to add one

4 – WEB SERVERS – 1 SUBNET, 1 LOAD BALANCER NETWORK INTERFACE, LAYER7, SSL TERMINATION

This is the same as example 1 with the addition of SSL termination on the load balancer.

Note:

We generally recommend that SSL should be terminated on the backend servers rather than the load balancer for scalability reasons.

a) Setting up AWS

1. Deploy the load balancer instance as described starting on page 12
2. Deploy your required web server instances into the same VPC & subnet as the load balancer
b) Setting up the Virtual Service

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Virtual Service** and click **Add a New Virtual Service**
2. Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>Web-Cluster1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Service</td>
<td></td>
</tr>
<tr>
<td>IP Address</td>
<td>10.0.0.22</td>
</tr>
<tr>
<td>Ports</td>
<td>80</td>
</tr>
<tr>
<td>Protocol</td>
<td></td>
</tr>
<tr>
<td>Layer 7 Protocol</td>
<td>HTTP Mode</td>
</tr>
<tr>
<td>Manual Configuration</td>
<td></td>
</tr>
</tbody>
</table>

3. Enter an appropriate label for the VIP, e.g. **Web-Cluster1**
4. Set the **Virtual Service IP address** field to the required IP address, e.g. **10.0.0.22**
5. Set the **Virtual Service Ports** field to the required port, e.g. **80**
6. Leave **Layer 7 Protocol** set to **HTTP Mode**
7. Click **Update**

c) Setting up the Real Servers

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created VIP
2. Enter the following details:

<table>
<thead>
<tr>
<th>Label</th>
<th>Web1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server</td>
<td></td>
</tr>
<tr>
<td>IP Address</td>
<td>10.0.0.23</td>
</tr>
<tr>
<td>Port</td>
<td>80</td>
</tr>
<tr>
<td>Re-Encrypt to Backend</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
</tbody>
</table>

3. Enter an appropriate label for the RIP, e.g. **Web1**
4. Change the **Real Server IP Address** field to the required IP address, e.g. **10.0.0.23**
5. Set the **Real Server Port** field to the required port, e.g. **80**
6. Click **Update**
7. Repeat the above steps to add your other web server(s)
d) Upload an SSL Certificate

1. Using the WebUI, navigate to SSL Termination and click Add a new SSL Certificate
2. Select Upload prepared PEM/PFX file
3. Enter an appropriate label (name) for the certificate, e.g. Cert1
4. Browse to and select the relevant certificate file
5. For PFX files, enter the PFX File Password
6. Click Add Certificate

Note:
You can also create a CSR on the load balancer. If this is required, select the Create A New SSL Certificate (CSR) option instead of Upload prepared PEM/PFX file in step 2 above. For additional information please refer to the Administration Manual and search for “Generating a CSR on the Load Balancer”.

e) Configuring SSL Termination

1. Using the WebUI, navigate to: Cluster Configuration > SSL Termination and click Add a New Virtual Service

![SSL Configuration Example]

2. Set the Associated Virtual Service drop-down to the VIP created in step (b) above (the Label field will be auto-populated)
3. Leave the SSL Operation Mode set to High Security
4. Select the SSL Certificate uploaded in step (d) above
5. Click Update

f) Applying the new Settings

1. Once the configuration is complete, use the Reload HAProxy button at the top of the screen to apply the changes
2. Once the configuration is complete, use the Restart STunnel button at the top of the screen to apply the changes

g) Associating the VIP with an Elastic IP Address (If access from the Internet is required)

1. Using the WebUI, navigate to: EC2 Configuration > EC2 Network Configuration
2. Under the Associated Elastic IP’s section click [Associate] next to the VIPs private IP address (10.0.0.22 in this case), if no Elastic IP’s are available, use the Allocate New Elastic IP button to add one.

5 – RD SESSION HOSTS – 2 SUBNETS, 1 LOAD BALANCER NETWORK INTERFACE, LAYER7

This example uses 2 subnets – one subnet for the load balancer and one subnet for the session hosts. The load balancer has a single network interface located in the first subnet.

a) Setting up AWS

1. Deploy the load balancer instance as described starting on page 12
2. Add a second subnet to your VPC, skip this step if you already have one
3. Deploy your required session host server instances into the second subnet

b) Setting up the Virtual Service

1. Using the WebUI, navigate to: *Cluster Configuration > Layer 7 – Virtual Service* and click Add a New Virtual Service
2. Enter the following details:
3. Enter an appropriate label for the VIP, e.g. **SessionHost-Cluster1**
4. Set the *Virtual Service IP address* field to the required IP address, e.g. **10.0.0.25**
5. Set the *Virtual Service Ports* field to the required IP address, e.g **3389**
6. Leave *Layer 7 Protocol* set to **TCP Mode**
7. Click **Update**
8. Now click **Modify** next to the newly created Virtual Service
9. Set **Persistence Mode** to **Source IP**
10. Click **Update**

c) Setting up the Real Servers

1. Using the WebUI, navigate to: **Cluster Configuration > Layer 7 – Real Servers** and click **Add a new Real Server** next to the newly created VIP
2. Enter the following details:

![Real Server Configuration](image)

3. Enter an appropriate label for the RIP, e.g. **SessionHost1**
4. Change the *Real Server IP Address* field to the required IP address, e.g. **10.0.2.50**
5. Set the *Real Server Port* field to the required port, e.g. **3389**
6. Click **Update**
7. Repeat the above steps to add your other session host server(s)

d) Applying the new Layer 7 Settings
1. Once the configuration is complete, use the Reload HAProxy button at the top of the screen to apply the changes.

e) Associating the VIP with an Elastic IP Address (If access from the Internet is required)

1. Using the WebUI, navigate to: EC2 Configuration > EC2 Network Configuration

2. Under the Associated Elastic IP’s section click [Associate] next to the VIP’s private IP address (10.0.0.25 in this case), if no Elastic IP’s are available, use the Allocate New Elastic IP button to add one.

6 – WEB SERVERS – 2 SUBNETS, 1 LOAD BALANCER NETWORK INTERFACE, LAYER4

This example uses 2 subnets – one subnet for the load balancer and one subnet for the web servers. The load balancer has a single network interface located in the first subnet. Routing rules for the second subnet must be changed so that return traffic passes back via the load balancer.

a) Setting up AWS

1. Deploy the load balancer instance as described starting on page 12.
2. Disable Source/Destination Check For the load balancer instance. This is required for layer 4 NAT mode services. This is because the instance must be able to send and receive traffic when the source or destination is not itself. This can be done by right-clicking the instance and selecting: Networking > Change Source/Dest. Check and ensuring it’s disabled.
3. Add a second subnet to your VPC, skip this step if you already have one.
4. Deploy your required web server instances into the second subnet.
5. Add a default route to the second subnets routing table (the subnet where the web servers are located), set the target to be the interface on the load balancer.

- Under the VPC dashboard, select Route Tables.
- Select the route table that relates to the second subnet.
- Select the Routes tab, and click Edit routes.
- Click Add route.
• In the blank row at the bottom set the destination to 0.0.0.0/0 and set the target to be the ENI on the load balancer – in this example “i-06e68cfb73e850255 LB1” as shown below.

![Route Tables > Edit routes](image)

IMPORTANT:
Make sure you have disabled the Source/Destination Check for the Load Balancer instance, otherwise the load balancer will **NOT** be displayed as an option.

• Click **Save Routes**

b) Setting up the Virtual Service

1. Using the WebUI, navigate to: *Cluster Configuration > Layer 4 – Virtual Service* and click **Add a New Virtual Service**.
2. Enter the following details:

![Virtual Service](image)

3. Enter an appropriate label for the VIP, e.g. **Web-Cluster1**.
4. Set the **Virtual Service IP address** field to the required IP address, e.g. **10.0.0.22**
5. Set the **Virtual Service Ports** field to the required port, e.g. **80**
6. Leave **Protocol** set to **TCP**
7. Click **Update**
c) Setting up the Real Servers

1. Using the WebUI, navigate to: Cluster Configuration > Layer 4 – Real Servers and click Add a new Real Server next to the newly created VIP
2. Enter the following details:

```
<table>
<thead>
<tr>
<th>Label</th>
<th>Web1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Server IP Address</td>
<td>10.0.1.20</td>
</tr>
<tr>
<td>Real Server Port</td>
<td>80</td>
</tr>
<tr>
<td>Weight</td>
<td>100</td>
</tr>
<tr>
<td>Minimum Connections</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>
```
3. Enter an appropriate label for the RIP, e.g. Web1
4. Change the Real Server IP Address field to the required IP address, e.g. 10.0.1.20
5. Set Real Server Port to 80
6. Click Update
7. Repeat the above steps to add your other web servers(s)

d) Associating the VIP with an Elastic IP Address (If access from the Internet is required)

1. Using the WebUI, navigate to: EC2 Configuration > EC2 Network Configuration

```
EC2 Network Configuration

Associated Elastic IP’s

54.174.78.120 ▶ 10.0.0.22 ▶ [Associate]

Available Elastic IP’s

54.174.78.120  apalloc-cba269ae  [Delete]
54.174.145.116 apalloc-6d48fd08  [Delete]

Allocate New Elastic IP
```
2. Under the Associated Elastic IP’s section click [Associate] next to the VIPs private IP address (10.0.0.22 in this case), if no Elastic IP’s are available, use the Allocate New Elastic IP button to add one

e) Enable Internet Connectivity via the Load Balancer for the Real Servers (If Required)

If the Real Servers need to access the Internet, 'Autonat' must be enabled on the load balancer to enable
1. Using the WebUI, navigate to: Cluster Configuration > Layer 4 – Advanced Configuration

![Auto-NAT setting](image)

2. Change the Auto-NAT setting to eth0
3. Click Update

8. Configuring High Availability using two Instances (Master & Slave)

Enterprise AWS supports HA mode using two instances configured as a clustered pair. In this mode, one device is active (typically the master appliance) and the other is passive (typically the slave appliance). If the active device fails for any reason, the passive device will take over. The master and slave appliances are deployed in the same subnet/Availability Zone to allow VIP(s) to be brought up on either appliance.

Note:
Various conditions must be met depending on the deployment type, please refer to the section IP address Allocation Options & Requirements for more details.

Note:
This procedure assumes the first appliance is already up and running and that it will be the master of the clustered pair.

Step 1 – Configure a VPC Endpoint to enable Amazon API access from both appliances

1. Please refer to section 4 in the appendix on page 60 for details on configuring an Endpoint.

Step 2 – Deploy a second Instance & Configure the Source/Dest. Check

1. Please refer to the steps starting on page 12
2. If you have layer 4 NAT mode services or Layer 7 services with TProxy enabled, you must disable the Source/Destination Check for the instance. Right-click the instance and select: Networking > Change Source/Dest. Check and ensure it's disabled (Stop should checked).

Step 3 – Prepare both instances for pairing

1. Using the WebUI, navigate to: Local Configuration > Security and change the Appliance Security Mode to Custom and ensure that Disable Console Access and Disable SSH Password Access are both un-checked on both appliances.
2. Now navigate to: Local configuration > Execute Shell Command (you may need to refresh the WebUI to see the option in the menu) run the following command on both appliances:
lb_enable_root enable

Step 4 – Update Security Group Settings

1. Ensure that the security groups used by both instances have the following Inbound rules defined. These are required to ensure that heartbeat (used for HA communication) can communicate between the two instances.

Rule 1:
Type: Custom Inbound UDP rule
Protocol: UDP
Port Range: 6694
Source: local subnet

Rule 2:
Type: Custom Inbound ICMP rule
Protocol: Echo Request
Port Range: N/A
Source: local subnet

Note:
Make sure you select ICMP Echo Request rather than ICMP Echo Reply.

Step 5 – Configure Heartbeat Failover Script (Applies to Layer 4 NAT mode and Layer 7 with TProxy)

For Layer 4 NAT mode, or Layer 7 mode with TProxy enabled, AWS routing rules must be configured so that the load balancer is the default gateway. To enable successful failover to the slave device, these routing rules must then be changed to route via the slave instance. To set this up:

1. On the master instance select the menu option: Cluster Configuration > Heartbeat Advanced and add the following line:

 aws ec2 replace-route --route-table-id rtb-01e14bef4c71fa663 --destination-cidr-block 0.0.0.0/0 --instance-id i-0ec274bb1ed990132 --region us-east-1

Note:
change rtb-01e14bef4c71fa663 to the RT-ID of the table associated with your real servers subnet
change i-0ec274bb1ed990132 to the Instance-Id of your master instance
change us-east-1 to your region

This sets the default route for the routing table associated with the subnet where your real servers are located to be the master instance. It’s run automatically each time the master becomes active.

2. On the slave instance select the menu option: Cluster Configuration > Heartbeat Advanced and add the following line:

 aws ec2 replace-route --route-table-id rtb-01e14bef4c71fa663 --destination-cidr-block 0.0.0.0/0 --instance-id i-0ca0bbe09f770161a --region us-east-1
Note:
change `rtb-01e14bef4c71fa663` to the RT-ID of the table associated with your real servers subnet
change `i-0ca0bbe09f770161a` to the Instance-Id of your slave instance
change `us-east-1` to your region

This sets the default route for the routing table associated with the subnet where your real servers are located to be the slave instance. It's run automatically each time the slave becomes active.

Step 6 – Configure High-Availability

1. Open the WebUI on the master unit
2. Select the menu option: `Cluster Configuration > High Availability Configuration`

3. In the `IP address of new peer` field, enter the slave appliances private IP address
4. In the Password for `loadbalancer user on peer` field enter the `Instance-ID` of the slave appliance
5. Click `Add new node`
6. Once the pairing configuration has finished, any required service restart messages and the confirmed pair message will be displayed as shown below:

7. Restart the services using the buttons presented, in this example HAPerxy and Heartbeat
Configuring High Availability using two Instances (Master & Slave)

Step 7 – Verify Synchronization State

1. Once all services have restarted, the synchronization process will be complete
2. Verify that the status on the master & slave is as follows:

 Master Unit:

<table>
<thead>
<tr>
<th>Master</th>
<th>Slave</th>
<th>Active</th>
<th>Passive</th>
<th>Link</th>
</tr>
</thead>
</table>

 Slave Unit:

<table>
<thead>
<tr>
<th>Master</th>
<th>Slave</th>
<th>Active</th>
<th>Passive</th>
<th>Link</th>
</tr>
</thead>
</table>

 Note:
 If no services have been configured, 'Active' will be grayed out on both instances.

 The slave can be made active by clicking [Advanced] in the green box, and then clicking the Take Over button

 Other states:

<table>
<thead>
<tr>
<th>Master</th>
<th>Slave</th>
<th>Active</th>
<th>Passive</th>
<th>Link</th>
</tr>
</thead>
</table>

 - this is a master unit, it’s active, no slave unit has been defined
 - this is a master unit, it’s active, a slave has been defined but the link to the slave is down. **Action check & verify the heartbeat configuration**
 - this is a slave unit, it’s active (a failover from the master has occurred) and the heartbeat link to the master has been established

Step 8 – For public facing deployments Associate an EIP with the VIP on the Active Appliance

If this is a public facing deployment, on the active appliance allocate a new Elastic IP (if required) and associate the VIP address with the EIP.

9. Configuring High Availability using two Instances across Availability Zones

Enterprise AWS also supports HA mode using two instances deployed in different AZs. In this mode, VIPs are configured on both instances and are always locally active, but only one is made available via the associated EIP. For more information on how this mode works, please refer to page 7.
Configuring High Availability using two Instances across Availability Zones

Step 1 – Configure a VPC with 2 Public Subnets, each in a different AZ

1. Create a VPC – the simplest way is to use the VPC wizard and using the option *VPC with a Single Public Subnet*
2. Add a second subnet and specify a different Availability Zone
3. Now make this second subnet a public subnet, by adding a default route with the Target set as an Internet Gateway, e.g.:

<table>
<thead>
<tr>
<th>Subnet</th>
<th>AZ</th>
<th>CIDR</th>
<th>Destination</th>
<th>Internet GW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AZ-1</td>
<td>10.0.0.0/24</td>
<td>0.0.0.0/0</td>
<td>igw-a72528c2</td>
</tr>
<tr>
<td>2</td>
<td>AZ-2</td>
<td>10.0.1.0/24</td>
<td>0.0.0.0/0</td>
<td>igw-a72528c2</td>
</tr>
</tbody>
</table>

Step 2 – Deploy 2 Instances & Configure the Source/Dest. Check

1. Now deploy 2 instances – one in subnet 1, the other in subnet 2 and associate an EIP with each instance. For more information on deploying instances, refer to the steps starting on page 12
2. Right-click each instance and select: *Networking > Change Source/Dest. Check* and ensure this is disabled

Step 3 – Configure Zone HA settings to enable the 2 instances to Communicate

1. On the instance in subnet 1, using the WebUI option: *EC2 Configuration > EC2 Zone HA Configuration*, select the *Synchronization* Tab

 ![Synchronization Tab](image)

 - **Synchronisation**
 - **Security**
 - **Configuration**

 Synchronise with peer
 - Generate a new TLS key pair and copy to peer
 - IP address of peer in another Availability Zone
 - 52.53.54.55
 - Password for loadbalancer user on peer
 - ********
 - **Add new node**

2. Enter the IP address (EIP) and loadbalancer user password for the second instance in subnet 2 (by default this is the *instance ID*)
3. Click **Add new node**
4. A new Keypair & associated certificates will be generated and copied to the second instance. These

Note:
Various conditions must be met depending on the deployment type, please refer to the section *IP address Allocation Options & Requirements* for more details.
Configuring High Availability using two Instances across Availability Zones

can be viewed and also deleted if required using the Security tab on each appliance

Step 4 – Configure Zone HA Settings
The status of the EIP is constantly checked, and if the EIP is down for longer than the time defined by the check parameters – by default this is 15s (3x5), an EIP association request is generated by the second instance. To view/configure the check parameters:

1. Using the WebUI, navigate to: *EC2 Configuration > EC2 Zone HA Configuration*
2. Select the **Configuration** tab

![Configuration Tab](image)

3. The default values work well in most situation. If these do need to be changed, make the same changes on both instances

Step 5 – Update Security Group Settings

1. Ensure that the security group used by each instance has the following additional rule defined, this is required to ensure that the Zone HA check service can contact the peer node
 - **Type:** Custom TCP rule
 - **Protocol:** TCP
 - **Port Range:** 9444
 - **Source:** Anywhere (or lockdown further if preferred)

Step 6 – Configure VIPs on both Instances (local private IP addresses)

1. Define VIP1 (e.g. **10.0.0.160/24**) with associated RIPS on LB1 in subnet 1/AZ-1
2. Define VIP2 (e.g. **10.0.1.160/24**) with associated RIPS on LB2 in subnet 2/AZ-2

Step 7 – Configure Failover Scripts

1. On the *first* instance, edit the file `/etc/loadbalancer.org/scripts/azhaFailover` and add any commands you would like to run (e.g. route customization) when the *first* instance becomes live.
2. On the *second* instance, edit the file `/etc/loadbalancer.org/scripts/azhaFailover` and add any commands you would like to run (e.g. route customization) when the *second* instance becomes live.
Configuring High Availability using two Instances across Availability Zones

Note:
Please refer to page 46 for an example of how to use the “aws ec2 replace-route” command.

Step 8 – Associate EIPs to Private IPs on the FIRST Instance

1. On the first instance, using the WebUI option: EC2 Configuration > EC2 Network Configuration, select the required EIP in the first drop-down and the VIP 1 address in the second drop-down

 Note:
The EIP selected here will be the IP address used by clients to connect to the load balanced services.

2. Check (tick) the Use with AZ HA checkbox
3. Now click the [Associate] link to the right of the checkbox, at this point the screen will appear similar to the following:

4. After around 30 seconds, the final status on the first instance configured will be as follows:

Step 9 – Associate EIPs to Private IPs on the SECOND Instance

1. Now repeat the procedure listed in step 7 on the second instance, making sure you select the same EIP address
2. The final status on the second appliance will be as follows:

Note:
The Network Configuration screen of the 2 instances will look slightly different as shown in the last 2 screen shots. The instance that is currently associated with the EIP will appear as shown in the first of these 2 screen shots.

Checking EIP Status

1. On the first instance, using the WebUI, navigate to: EC2 Configuration > EC2 Zone HA Status will
show the following status:

<table>
<thead>
<tr>
<th>AZ HA Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic IP</td>
</tr>
<tr>
<td>52.18.198.235</td>
</tr>
</tbody>
</table>

- The EIP status is **Local**, i.e. it’s active on this instance

2. On the second instance, Using the WebUI, navigate to: *EC2 Configuration > EC2 Zone HA Status* will show the following status:

<table>
<thead>
<tr>
<th>AZ HA Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic IP</td>
</tr>
<tr>
<td>52.18.198.235</td>
</tr>
</tbody>
</table>

- The EIP status is **Peer**, i.e. it’s active on the other instance

Testing EIP failover

1. Stop the instance where the EIP is currently associated, i.e. where the status is **Local**
2. Verify that the EIP is now associated with the other instance

Note:

This can take up to 30 seconds to complete.

Manually moving the EIP to the other Instance

To force the EIP to be associated with the other instance:

- Click the **[Associate]** link on the instance where the EIP is not currently active
- Or
- Click the **[Dissociate]** link on the instance where the EIP is currently active

Note:

Using **[Dissociate]** is the slower of the 2 options because the other device has to first detect that the EIP is down which will cause some initial delay, whereas the first option forces an immediate EIP re-association.
10. Testing – General Comments

Note:
For more information and guidance, please refer to the Administration Manual and search for “Testing Load Balanced Services.”

TESTING LOAD BALANCED SERVICES

For example, to test a web server based configuration, add a page to each web servers root directory e.g. test.html and put the server name on this page for easy identification during the tests.

Use two or more clients to do the testing. Open up a web browser on each test client and enter the URL for the VIP e.g. http://192.168.110.10

Provided that persistence is disabled, each client should see a different server name because of the load balancing algorithm in use, i.e. they are being load balanced across the cluster.

Why test using two clients? If you use a single client it will most likely keep on hitting the same server for multiple requests. This is to do with the way that the load balancing algorithms are optimized.

DIAGNOSING VIP CONNECTION PROBLEMS

1. **Make sure that the device is active** – this can be checked in the WebUI. For a single appliance, the status bar should report Master & Active as shown below:

 ![Master | Slave | Active | Passive | Link]

2. **Check that the VIP/floating IP is up** – Using View Configuration > Network Configuration verify that the VIP is active on the load balancer, if not check Logs > Heartbeat for errors.

 eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc pfifo_fast state UP qlen 1000
 link/ether 02:bd:88:12:2f:5b brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.220/24 brd 10.0.0.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet 10.0.0.22/24 brd 10.0.0.255 scope global secondary eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::bd:88ff:fe12:2f5b/64 scope link
 valid_lft forever preferred_lft forever

 The above example shows that the interface (10.0.0.220) and VIP address (10.0.0.22) are both up.

3. **Check that the Real Servers are up** – Using System Overview make sure that none of your VIPs are colored red. If they are, the entire cluster is down (i.e. all Real Servers). Green indicates a healthy cluster, yellow indicates that your cluster may need attention (one or more of the Real Servers may be down), and blue indicates all Real Server have been deliberately taken offline (by using either Halt or Drain).
4. **Check the connection state**

For layer 4 NAT mode VIPs, check *Reports > Layer 4 Current Connections* to view the current traffic in detail. Any packets with state **SYN_RECV** often implies a return traffic routing issue:

- for single subnet Layer 4 mode make sure that the default gateway on all real servers is set to be the load balancer
- for dual subnet Layer 4 mode make sure that routing on the second subnet has been configured correctly

For Layer 7 VIPs, check *Reports > Layer 7 Status*. The default credentials required are:

- **username**: loadbalancer
- **password**: <password>

The password is set to a random arbitrary value when first booted. To view the password, using the WebUI navigate to: View Configuration > Layer 7, scroll to the “listen stats” section at the bottom of the screen and the password can be found after the colon on the “stats auth” line, e.g.

```plaintext
stats auth loadbalancer:EBAIA2h2i2NJ
```

This will open a second tab in the browser and display a statistics/status report as shown in the example below (this is accessed on port TCP/7777 so make sure that the inbound rules allow connections on this port):
Testing – General Comments

TAKING REAL SERVERS OFFLINE

1) Using the **System Overview** check that when you Halt one of the Real Servers the connections are redirected to the other server in the cluster.

2) Stop the web service/process on one of the servers, wait a few seconds (for the load balancer to detect the change) and then refresh the browsers on both clients. They should now both switch to the same server (since one has been removed from the load balancing list). Also check that the server is shown red (down) in the system overview.

3) Start the web service/process on the server, wait a few seconds and then refresh the browsers again. After a few refreshes they should again show different web servers. Also check that the server is shown green (up) in the system overview.

The **System Overview** shows the status as these tests are performed:

![System Overview](image)

In this example:

- **RIP1** is green, this indicates that it’s operating normally
- **RIP2** is blue, this indicates that it has been either Halted or Drained. In this example Halt has been used as indicated by Online (Halt) being displayed. If it had been drained it would show as Online (Drain)
- **RIP3** is red, this indicates that it has failed a health check

USING REPORTS & LOG FILES

The appliance includes several logs and reports that are very useful when diagnosing issues. Both are available as main menu options in the WebUI. Details of both can be found in the Administration manual.

11. More Information

Please refer to our website for all the latest manuals and deployment guides.

12. Loadbalancer.org Technical Support

If you have any questions regarding the appliance or how to load balance your application, please don’t hesitate to contact our support team using the following email address: support@loadbalancer.org
13. Appendix

1 – IAM ROLE CONFIGURATION

Once configured and associated with the load balancer instance, the IAM role enables the load balancer to securely make EC2 API requests. These requests enable EC2 console functions to be called automatically and minimize the need to configure both the load balancer and EC2. e.g. When EIPs are configured via the load balancer’s WebUI, they are also auto-configured in EC2. To configure the required IAM role:

1. In the AWS Console, under the Security, Identity & Compliance section select the IAM Option
2. Select Policies in the Dashboard
3. Click Create Policy
4. Select the JSON tab
5. Copy and paste the complete policy definition shown on the following page into the JSON window, replacing all existing text
6. Click Review Policy
7. Verify that you’re happy with the configuration
8. Type a suitable Name & Description for the new Policy
9. Click Create Policy
10. Select Roles in the Dashboard
11. Click Create Role
12. For Choose the service that will use this role, select EC2
13. For Select your user case, select EC2 (Allows EC2 instances to call AWS services on your behalf)
14. Click Next: Permissions
15. To view the Policy just created, change the Filter to Customer Managed
16. Now check (tick) the policy just created
17. Click Next: Review
18. Type a suitable Name & Description for the new Role
19. Click Create Role
IAM Policy Definition – copy & paste this into the new Policy

{
 "Version": "2012-10-17",
 "Statement": [

 {
 "Effect": "Allow",
 "Action": [
 "ec2:AllocateAddress",
 "ec2:AssignPrivateIpAddresses",
 "ec2:AssociateAddress",
 "ec2:AttachNetworkInterface",
 "ec2:CreateNetworkInterface",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeAccountAttributes",
 "ec2:DescribeAddresses",
 "ec2:DescribeInstanceAttribute",
 "ec2:DescribeInstanceStatus",
 "ec2:DescribeInstances",
 "ec2:DescribeNetworkInterfaceAttribute",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DisassociateAddress",
 "ec2:ModifyNetworkInterfaceAttribute",
 "ec2:ReleaseAddress",
 "ec2:ResetNetworkInterfaceAttribute",
 "ec2:UnassignPrivateIpAddresses"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "autoscaling:*",
 "Resource": "*"
 }
]
}
2 – CONFIGURING THE LOAD BALANCER TO AUTO ADD/REMOVE AUTO-SCALED REAL SERVERS

If auto-scaling is used, the load balancer must be notified when EC2 instances are either launched or shutdown to ensure that the list of load balanced servers is kept up-to-date. The steps below explain what must be done to achieve this:

Step 1 – Setup the Launch Configuration & Auto-Scaling Group
Using the EC2 Dashboard, create your launch configuration and auto-scaling group according to your requirements.

Step 2 – Create the Virtual Service on the Load Balancer
Now create the layer 4 or layer 7 Virtual Service in the normal way. There is no need to manually add the real servers, these will be automatically added once step 3 below is complete.

Step 3 – Associate the Auto-Scaling Group with the Virtual Service
Modify the layer 4 or layer 7 VIP, then in the *Autoscaling Group Name* field specify the Auto-Scaling group created in step 1 as shown in the example below:

<table>
<thead>
<tr>
<th>Virtual Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual Configuration</td>
</tr>
<tr>
<td>Label</td>
</tr>
<tr>
<td>IP Address</td>
</tr>
<tr>
<td>Ports</td>
</tr>
<tr>
<td>Autoscaling Group Name</td>
</tr>
<tr>
<td>Autoscaling backend server port</td>
</tr>
</tbody>
</table>

Protocol

- **Layer 7 Protocol**
 - HTTP Mode

Note:
For Layer 7 VIPs there is an additional field called *Autoscaling backend server port* as shown above. This can be used to define the backend server port if it’s different from the VIP. This is only used when the autoscaling service adds a new server. If left empty, by default new backend servers will be created using the same port as the VIP.

Now save the updated configuration and restart services as prompted.

Note:
For more information on configuring Auto-scaling in AWS, please refer to the following URL:
3 – CONFIGURING AUTO-SCALING TO AUTO DEPLOY A NEW LB.ORG INSTANCE ON FAILURE

Follow this procedure to configure Auto Scaling for your Loadbalancer.org instance. Once configured, if the load balancer instance is stopped or terminated, auto-scaling will automatically start a new instance with the same settings and configuration. The steps required to set this up are shown below:

Step 1 – Deploy a Load Balancer instance
Launch and configure your Loadbalancer.org instance if not already done so.

Step 2 – Create an image of the instance
This will be the source image when new instances are deployed.

1. Right click the running instance and select: Images & templates > Create Image
2. Enter an appropriate name & description for the image – e.g. AS-LB-Recovery, LB recovery image
3. Click Create Image to start the image creation process, this should be completed within a few minutes, creation status can be checked under: Images > AMIs

Step 3 – Configure a Launch Configuration
A launch configuration is an instance configuration template that an Auto Scaling group uses to launch EC2 instances.

1. Using the VPC Dashboard, under Auto Scaling select Launch Configurations
2. Click the Create Launch Configuration button
3. Define a name for the Launch Configuration, e.g. LB-LC1
4. Under My AMIs Choose the AMI created in Step 2 above
5. Select a suitable Instance type, typically the same as the original load balancer
6. Under IAM instance profile select the IAM role that was used for the original load balancer
7. To enable the same Elastic IP Address (EIP) to be attached to the new instance, expand the Advanced details section and complete steps a) and b) below:

 a) Copy/paste the following script into the User data field:

   ```
   #!/bin/bash
   # set EIP_ID to the allocation ID of your Elastic IP Address
   EIP_ID="eipalloc-0018577077972aa37"
   # set LB_REGION to the appropriate region
   LB_REGION="us-east-1"
   /usr/local/bin/aws ec2 associate-address --instance-id $INSTANCE_ID --region $LB_REGION --allow-reassociation --allocation-id $EIP_ID --private-ip-address $IPV4_ADDRESS > /var/log/lbas.log 2>&1
   ```

 Note:
 Make the following changes to the above script to suit your environment:
 - change EIP_ID in line 3 to the allocation ID of your EIP – this can be found in the information pane for the EIP
 - change LB_REGION in line 5 to the appropriate region

Enterprise AWS Configuration Guide v8.5.6
Page 59
Appendix

b) Change *IP Address Type* to **Assign a public IP address to every instance**

Now continue as follows:

8. Select the same **Security group** that was used for the original load balancer instance
9. Configure the required **Key pair options**
10. Click **Create Launch Configuration**

Step 4 – Create an Auto Scaling Group

1. Using the VPC Dashboard, under *Auto Scaling* select **Auto Scaling Groups**
2. Click the **Create Auto Scaling group** button
3. Enter an appropriate *Group name*, e.g. **AS1**
4. Under *Launch Template* click **Switch to Launch Configuration**
5. Select the *Launch Configuration* created in the previous step
6. Click **Next**
7. Select your *VPC* and *Subnet(s)*
8. Click **Next**
9. Under *load balancing*, leave **No Load Balancer** selected
10. Under *Health Checks*, change the *health check grace period* if required
11. Click **Next**
12. Configure the group size and scaling policies to suit your environment
13. Click **Next**
14. Configure any required notifications and Click **Next**
15. Configure any required Tags and Click **Next**
16. Review all settings and click **Create Auto Scaling group**

A new instance will now start automatically. You can now shutdown the original instance

Note:
The password to access the WebUI will be the instance-id of the source instance, **not** the new auto scaled instance.

Testing
You can now test the new indestructible instance using the Amazon Web Management Console. Simply stop the instance, the auto-scaling configuration should then start a brand new copy of the instance.

Completely Terminating the Instance
Don’t simply terminate the instance using the console, this will cause another replacement instance to automatically start. You’ll need to delete the Auto Scaling group. This will also terminate any associated instances.

5 – CONFIGURING A VPC ENDPOINT TO ENABLE AWS API ACCESS
As explained in the section **IP address Allocation Options & Requirements**, Endpoints are required to enable access to the AWS API. The steps required to configure an Endpoint are as follows:

1. Open the VPC Dashboard and select **Endpoints**
2. Click **Create Endpoint**
3. Leave **Service Category** set to **AWS Service**
4. Under **Service Name** select the EC2 service, for us-east, the full name is `com.amazonaws.us-east-1.ec2`

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Owner</th>
<th>Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>com.amazonaws.us-east-1.dynamodb</td>
<td>amazon</td>
<td>Gateway</td>
</tr>
<tr>
<td>com.amazonaws.us-east-1.ebs</td>
<td>amazon</td>
<td>Interface</td>
</tr>
<tr>
<td>com.amazonaws.us-east-1.ec2</td>
<td>amazon</td>
<td>Interface</td>
</tr>
<tr>
<td>com.amazonaws.us-east-1.ec2messages</td>
<td>amazon</td>
<td>Interface</td>
</tr>
</tbody>
</table>

5. Select the **VPC** where the load balancer instances are located
6. Select the **subnet(s)** where the load balancer instances are located
7. Leave **Enable DNS name** ticked (checked)
8. Select/configure a **Security group** that allows inbound access on TCP port 443
9. Configure the **Policy** to suit your requirements
10. Click **Create endpoint**
11. To check that the load balancer instance(s) have the required access, SSH into each appliance and test the connection using curl as shown below:

 ![SSH Command Example]

   ```bash
   [lbuser@lbmaster ~]$ curl https://ec2.us-east-1.amazonaws.com
   [lbuser@lbmaster ~]$ 
   ```

 This shows a successful connection to the AWS API Endpoint.
Appendix

6 – COMPANY CONTACT INFORMATION

<table>
<thead>
<tr>
<th>Website</th>
<th>URL:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>www.loadbalancer.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>North America (US)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Loadbalancer.org, Inc.</td>
<td>4550 Linden Hill Road, Suite 201 Wilmington, DE 19808 USA</td>
<td></td>
</tr>
<tr>
<td>Tel:</td>
<td>+1 833.274.2566</td>
<td></td>
</tr>
<tr>
<td>Email (sales):</td>
<td>sales@loadbalancer.org</td>
<td></td>
</tr>
<tr>
<td>Email (support):</td>
<td>support@loadbalancer.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>North America (Canada)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Loadbalancer.org Appliances Ltd.</td>
<td>300-422 Richards Street Vancouver, BC V6B 2Z4 Canada</td>
<td></td>
</tr>
<tr>
<td>Tel:</td>
<td>+1 866.998.0508</td>
<td></td>
</tr>
<tr>
<td>Email (sales):</td>
<td>sales@loadbalancer.org</td>
<td></td>
</tr>
<tr>
<td>Email (support):</td>
<td>support@loadbalancer.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Europe (UK)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Loadbalancer.org Ltd.</td>
<td>Compass House North Harbour Business Park Portsmouth, PO6 4PS UK</td>
<td></td>
</tr>
<tr>
<td>Tel:</td>
<td>+44 (0)330 380 1064</td>
<td></td>
</tr>
<tr>
<td>Email (sales):</td>
<td>sales@loadbalancer.org</td>
<td></td>
</tr>
<tr>
<td>Email (support):</td>
<td>support@loadbalancer.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Europe (Germany)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Loadbalancer.org GmbH</td>
<td>Tengstraße 27 80798 München Germany</td>
<td></td>
</tr>
<tr>
<td>Tel:</td>
<td>+49 (0)89 2000 2179</td>
<td></td>
</tr>
<tr>
<td>Email (sales):</td>
<td>vertrieb@loadbalancer.org</td>
<td></td>
</tr>
<tr>
<td>Email (support):</td>
<td>support@loadbalancer.org</td>
<td></td>
</tr>
</tbody>
</table>